Document Type : Articles

Authors

Payame Noor Univrsity

Abstract

An increasing number of articles published in different scientific fields makes it necessary to analyze the topics of these articles in specialized journals. For this purpose, topics published in the studies on medical librarianship and information in specialized journals were identified and analyzed in the present research. In the present study, an exploratory and descriptive approach was used to analyze medical librarianship and information articles published in specialized journals of this field from 1964 to 2019 by employing text-mining techniques. A latent Dirichlet Allocation (LDA) topic modeling algorithm was used to identify the published topics. Python programming language was also used to run text-mining algorithms. The findings of text mining and topic modeling showed that the following topics were published in medical librarianship and information: Patients' use of information resources (34%), Medical Librarianship and Information Services (18%), Scientometrics and bibliometrics (16.32%), Web-based treatment (15.47%), Information literacy and information skills (13.9%), and Trend and tweet analysis (1.92%). The publishing trend of articles in the medical librarianship and information indicates a change in research in the field.https://dorl.net/dor/20.1001.1.20088302.2022.20.2.12.7

Keywords

  1. Abd-Alrazaq, A., Alhuwail, D., Househ, M., Hamdi, M., & Shah, Z. (2020). Top concerns of tweeters during the COVID-19 pandemic: infoveillance study. Journal of medical Internet research, 22(4), e19016.
  2. Abramson, D., Lees, M., Krzhizhanovskaya, V. V., Dongarra, J. J., & Sloot, P. M. (2014). Big Data Meets Computational Science, Preface for ICCS 2014. Paper presented at the ICCS.
  3. Blei, D. M. (2012). Probabilistic topic models Commun. . ACM, 55(4), 77-84.
  4. Blei, D. M., Ng, A., & Jordan, M. (2003). Latent dirichlet allocation journal of machine learning research (3).
  5. Chang, J., Gerrish, S., Wang, C., Boyd-Graber, J. L., & Blei, D. M. (2009). Reading tea leaves: How humans interpret topic models. Paper presented at the Advances in neural information processing systems.
  6. Chen, K., Kou, G., Shang, J., & Chen, Y. (2015). Visualizing market structure through online product reviews: Integrate topic modeling, TOPSIS, and multi-dimensional scaling approaches. Electronic Commerce Research and Applications, 14(1), 58-74.
  7. Cheng, X., Shuai, C., Liu, J., Wang, J., Liu, Y., Li, W., . . . environment. (2018). Topic modelling of ecology, environment and poverty nexus: An integrated framework. Agriculture, ecosystems, 267, 1-14.
  8. Cui, W., Wu, Y., Liu, S., Wei, F., Zhou, M. X., & Qu, H. (2010). Context preserving dynamic word cloud visualization. Paper presented at the 2010 IEEE Pacific Visualization Symposium (PacificVis).
  9. Dancy-Scott, N., Dutcher, G. A., Keselman, A., Hochstein, C., Copty, C., Ben-Senia, D., ... & Choi, J. J. (2018). Trends in HIV terminology: text mining and data visualization assessment of International AIDS conference abstracts over 25 years. JMIR public health and surveillance, 4(2), e50.‏
  10. Dimitroff, A. (1992). Research in health sciences library and information science: a quantitative analysis. Bulletin of the Medical Library Association, 80(4), 340.‏
  11. Figuerola, C. G., Garcia Marco, F. J., & Pinto, M. (2017). Mapping the evolution of library and information science (1978–2014) using topic modeling on LISA. Scientometrics, 112(3), 1507-1535. doi:10.1007/s11192-017-2432-9.
  12. Frisse, M. E., Braude, R. M., Florance, V., & Fuller, S. (1995). Informatics and medical libraries: changing needs and changing roles. Academic medicine: journal of the Association of American Medical Colleges, 70(1), 30-35.
  13. Funk, M. E. (2013). Our words, our story: a textual analysis of articles published in the Bulletin of the Medical Library Association/Journal of the Medical Library Association from 1961 to 2010. Journal of the Medical Library Association: JMLA, 101(1), 12.
  14. Gavgani, V. Z., & Mohan, V. V. (2008). Application of Web 2.0 Tools in Medical Librarianship to Support Medicine. Webology, 5(1).‏
  15. Gore, S. A., Nordberg, J. M., Palmer, L. A., & Piorun, M. E. (2009). Trends in health sciences library and information science research: an analysis of research publications in the Bulletin of the Medical Library Association and Journal of the Medical Library Association from 1991 to 2007. Journal of the Medical Library Association: JMLA, 97(3), 203.
  16. Greene, D., & Cross, J. P. (2017). Exploring the political agenda of the european parliament using a dynamic topic modeling approach. Political Analysis, 25(1), 77-94.
  17. Greene, D., O’Callaghan, D., & Cunningham, P. (2014). How many topics? stability analysis for topic models. Paper presented at the Joint European Conference on Machine Learning and Knowledge Discovery in Databases.
  18. Griffiths, T. L., & Steyvers, M. (2004). Finding scientific topics. Proceedings of the National academy of Sciences, 101(suppl 1), 5228-5235.
  19. Groen, F. K. (2007). Access to medical knowledge: Libraries, digitization, and the public good.
  20. Hashimi, H., Hafez, A., & Mathkour, H. (2015). Selection criteria for text mining approaches. Computers in Human Behavior, 51, 729-733.‏
  21. Hobbs, R., & Jensen, A. (2009). The past, present, and future of media literacy education. Journal of media literacy education, 1(1), 1.
  22. Hofmann, T. (1999). Probabilistic latent semantic indexing. Paper presented at the Proceedings of the 22nd annual international ACM SIGIR conference on Research and development in information retrieval.
  23. Homan, J. M., & McGowan, J. J. (2002). The Medical Library Association: promoting new roles for health information professionals. Journal of the Medical Library Association, 90(1), 80.
  24. Jelodar, H., Wang, Y., Yuan, C., Feng, X., Jiang, X., Li, Y., & Zhao, L. (2019). Latent Dirichlet Allocation (LDA) and Topic modeling: models, applications, a survey. Multimedia Tools Applications, 78(11), 15169-15211.
  25. Kao, A., & Poteet, S. R. (Eds.). (2007). Natural language processing and text mining. Springer Science & Business Media.‏
  26. Kenefick, C., & Werner, S. E. (2011). Bibliometric Study of Medical Reference Services Quarterly, 1982–2009. Medical reference services quarterly, 30(1), 1-11.
  27. Kim, Y. M., & Delen, D. (2018). Medical informatics research trend analysis: A text mining approach. Health informatics journal, 24(4), 432-452.‏
  28. Kurata, K., Miyata, Y., Ishita, E., Yamamoto, M., Yang, F., Iwase, A., & Technology. (2018). Analyzing library and information science full‐text articles using a topic modeling approach. Proceedings of the Association for Information Science, 55(1), 847-848
  29. Lam, C., Lai, F. C., Wang, C. H., Lai, M. H., Hsu, N., & Chung, M. H. (2016). Text mining of journal articles for sleep disorder terminologies. PloS one, 11(5), e0156031.‏
  30. Lamba, M., & Madhusudhan, M. (2019). Mapping of topics in DESIDOC Journal of Library and Information Technology, India: a study. Scientometrics, 120(2), 477-505. doi:10.1007/s11192-019-03137-5
  31. Larivière, V., Sugimoto, C. R., & Cronin, B. (2012). A bibliometric chronicling of library and information science's first hundred years. Journal of the American Society for Information Science and Technology, 63(5), 997-1016
  32. Lessick, S., Perryman, C., Billman, B. L., Alpi, K. M., De Groote, S. L., & Babin Jr, T. D. (2016). Research engagement of health sciences librarians: a survey of research-related activities and attitudes. Journal of the Medical Library Association: JMLA, 104(2), 166.‏
  33. O’callaghan, D., Greene, D., Carthy, J., & Cunningham, P. (2015). An analysis of the coherence of descriptors in topic modeling. Expert Systems with Applications, 42(13), 5645-5657.
  34. Oliver, W. (2020). The Symbolic Power of the Research Excellence Framework. Evidence from a case study on the individual and collective adaptation of British Sociologists. In.
  35. Olmeda-Gomez, C., Ovalle-Perandones, M.-A., & Perianes-Rodriguez, A. (2017). Co-word analysis and thematic landscapes in Spanish information science literature, 1985–2014. Scientometrics, 113(1), 195-217. doi:10.1007/s11192-017-2486-8
  36. Ozaydin, B., Zengul, F., Oner, N., & Delen, D. (2017). Text-mining analysis of mHealth research. MHealth, 3.‏
  37. Rehurek, R., & Sojka, P. (2010). Software framework for topic modelling with large corpora. Paper presented at the In Proceedings of the LREC 2010 Workshop on New Challenges for NLP Frameworks.
  38. Röder, M., Both, A., & Hinneburg, A. (2015). Exploring the Space of Topic Coherence Measures. Paper presented at the Proceedings of the Eighth ACM International Conference on Web Search and Data Mining, Shanghai, China.
  39. Rodriguez-Esteban, R., & Bundschus, M. (2016). Text mining patents for biomedical knowledge. Drug discovery today, 21(6), 997-1002.‏
  40. Rusanov, A., Miotto, R., & Weng, C. (2018). Trends in anesthesiology research: a machine learning approach to theme discovery and summarization. JAMIA open, 1(2), 283-293.‏
  41. Saheb, T., & Saheb, M. (2019). Analyzing and visualizing knowledge structures of health informatics from 1974 to 2018: a bibliometric and social network analysis. Healthcare informatics research, 25(2), 61-72.‏
  42. Salloum, S. A., Al-Emran, M., Monem, A. A., & Shaalan, K. (2018). Using text mining techniques for extracting information from research articles. In Intelligent natural language processing: trends and applications (pp. 373-397). Springer, Cham.‏
  43. Sbalchiero, S., & Eder, M. (2020). Topic modeling, long texts and the best number of topics. Some Problems and solutions. Quality & Quantity, 1-14.
  44. SoleimaniNezhad, A., salajegheh, M., & Tayyebi Nia, E. (2019). Clustering scientific articles based on the k_means algorithmCase Study: Iranian Research Institute for information Science and Technology (IranDoc). Iranian Journal of Information Processing and Management. 34(2), 871-896.
  45. Srivastava, A. N., & Sahami, M. (2009). Text mining: Classification, clustering, and applications: Chapman and Hall/CRC.
  46. Tober, M. (2011). PubMed, ScienceDirect, Scopus or Google Scholar–Which is the best search engine for an effective literature research in laser medicine? Medical Laser Application, 26(3), 139-144.
  47. Wei, X., & Croft, W. B. (2006). LDA-based document models for ad-hoc retrieval. Paper presented at the Proceedings of the 29th annual international ACM SIGIR conference on Research and development in information retrieval.
  48. Yau, C.-K., Porter, A., Newman, N., & Suominen, A. (2014). Clustering scientific documents with topic modeling. Scientometrics, 100(3), 767-786.
  49. Yu, D., Xu, Z., Pedrycz, W., & Wang, W. (2017). Information Sciences 1968–2016: a retrospective analysis with text mining and bibliometric. Information Sciences, 418, 619-634.‏
  50. Zhang, H. (1994). A Bibliometric Study of the Articles on Medical Librarianship. Igaku Toshokan, 41(1), 84-97.
  51. Zhang, Y., Chen, M., & Liu, L. (2015). A review on text mining. Paper presented at the 2015 6th IEEE International Conference on Software Engineering and Service Science (ICSESS).