Document Type : Articles


1 Alzahra University

2 Alzahra university


Today, e-commerce has become a competitive space for online retailers. Therefore, personalization has become a vital part of e-commerce websites’ success that is a challenge for marketers and researchers. Therefore, this study aims to provide a model for web personalization and mining user interests using a hybrid approach of web-usage and web-content mining. So, the navigational patterns of web users and the interests of each user on web pages of a Persian website were extracted through web-usage mining and topic modeling, respectively. Users were then clustered using the dependency distribution algorithm and 25 categories were extracted. To better understand the behavioral patterns of web users, they were categorized using the Support Vector Machine algorithm based on the users’ interests and navigational behaviors. The most important result of the proposed system is that the patterns of users’ navigation are understandable and the subsequent analyzes will be much simpler.  


  1. Akanfe, O., Valecha, R., & Rao, H. R. (2020). Design of an Inclusive Financial Privacy Index (INF-PIE): A Financial Privacy and Digital Financial Inclusion Perspective. ACM Transactions on Management Information Systems (TMIS), 12(1), 1-21.
  2. Al Shalabi, L., & Shaaban, Z. (2006, May). Normalization as a preprocessing engine for data mining and the approach of preference matrix. In 2006 Int conf. Depend comput syst (pp. 207-214). IEEE.‏
  3. Arbelaitz, O., Gurrutxaga, I., Lojo, A., Muguerza, J., Perez, J. M., & Perona, I. (2013). Web usage and content mining to extract knowledge for modelling the users of the Bidasoa Turismo website and to adapt it. Expert Syst. App. 40(18): 7478-7491.‏
  4. Beheshtian-Ardakani, A., Fathian, M., & Gholamian, M. (2018). A novel model for product bundling and direct marketing in e-commerce based on market segmentation. Decis. Sci. Lett, 7(1): 39-54.‏
  5. Bharti, P. M., & Raval, T. J. (2019, June). Improving Web Page Access Prediction using Web Usage Mining and Web Content Mining. In 2019 3rd Int conf Elec, Commun Aerospace Tech (ICECA) (pp. 1268-1273). IEEE.
  6. Bin, W., & Zhijing, L. (2003, September). Web mining research. In Proceedings Fifth International Conference on Computational Intelligence and Multimedia Applications. ICCIMA 2003 (pp. 84-89). IEEE.
  7. Blei, D. M. (2012). Probabilistic topic models. Commun ACM, 55(4): 77-84.‏
  8. Briedienė, M., Kilpys, V., & Krilavičius, T. (2019). Media analysis that reflects the spread of antichristian opinion. In CEUR Workshop proceedings [electronic resource]: IVUS 2019, Int conf on inform technol, Kaunas, Lithuania. Aachen: CEUR-WS, 2019. 2470.‏
  9. Carmona, C. J., Ramirez-Gallego, S., Torres, F., Bernal, E., Del Jesús, M. J., & Garcia, S. (2012). Web usage mining to improve the design of an e-commerce website: Expert Syst. App. 39(12): 11243-11249.‏
  10. Chitraa, V., & Thanamani, A. S. (2011). A novel technique for session’s identification in Web usage mining preprocessing. Int. J. Comput. Appl. 34(9): 23-27.
  11. Dai, H. (2005). Integrating semantic knowledge with Web usage mining for personalization. In Web mining: Appl. techniques (pp. 276-306). IGI Global.
  12. Das, R., & Turkoglu, I. (2009). Creating meaningful data from Web logs for improving the impressiveness of a website by using path analysis method. Expert Syst. App. 36(3): 6635-6644.‏
  13. Eirinaki, M., & Vazirgiannis, M. (2003). Web mining for Web personalization. ACM T Internet Techn (TOIT), 3(1): 1-27.
  14. El Aissaoui, O., El Madani, Y. E. A., Oughdir, L., & El Allioui, Y. (2019). A fuzzy classification approach for learning style prediction based on Web mining technique in e-learning environments. J Educate Inf Technol, 24(3): 1943-1959.
  15. Fong, A. C. M., Zhou, B., Hui, S. C., Hong, G. Y., & Do, T. A. (2011). Web content recommender system based on consumer behavior modeling. IEEE T Consum Electr, 57(2): 962-969.‏
  16. Grace, L. J., Maheswari, V., & Nagamalai, D. (2011, January). Web log data analysis and mining. In IntConf Comput Sci and Inf. Technol. (pp. 459-469). Springer, Berlin, Heidelberg.
  17. Guerbas, A., Addam, O., Zaarour, O., Nagi, M., Elhajj, A., Ridley, M., & Alhajj, R. (2013). Effective Web log mining and online navigational pattern prediction. Knowl-Based Syst, 49: 50-62.‏
  18. He, Y., Chen, Q., Wang, X., Xu, R., Bai, X., & Meng, X. (2010, March). An adaptive affinity propagation document clustering. In 2010 The 7th Int Conf Inform and Syst (INFOS) (pp. 1-7). IEEE.‏
  19. Jalali, M., Mustapha, N., Sulaiman, M. N., & Mamat, A. (2010). WebPUM: A Web-based recommendation system to predict user future movements. Expert Syst. Appl, 37(9): 6201-6212.‏
  20. Kalaignanam, K., Kushwaha, T., & Rajavi, K. (2019). How Does Web Personalization Create Value? Lower Cash Flow Volatility or Enhanced Cash Flows. Lower Cash Flow Volatility or Enhanced Cash Flows (May 8, 2019).‏
  21. Khatri, R., & Gupta, D. (2015, July). An efficient periodic Web content recommendation based on Web usage mining. In 2015 IEEE 2nd Int Conf Trends in Inf Syst (ReTIS) (pp. 132-137). IEEE.‏
  22. Kumar, S., & Kumar, R. A. (2021). Study on Different Aspects of Web Mining and Research Issues. 1st International Conference on Computational Research and Data Analytics (ICCRDA 2020) 24th October 2020, Rajpura, India. IOP Publishing.
  23. Liu, B., & Chen-Chuan-Chang, K. (2004). Special issue on Web content mining. Acm SIGKDD Explor, 6(2): 1-4.‏
  24. McLeod, S. A. (2019, May 17). Z-score: definition, calculation and interpretation. Simply Psychology., Accessed: 25 March 2007.
  25. Modi, S., & Jagtap, S. (2018). Browser integrated Web content filtering using natural language processing. Aeu-Int J Electron C (IJMECE), 6(4), 108-112.‏
  26. Nkwo, M., Orji, R., Nwokeji, J. C., & Ndulue, C. (2018). E-Commerce Personalization in Africa: A Comparative Analysis of Jumia and Konga. In PPT@ Persuasive (pp. 68-76).
  27. Pappas, I. O., Kourouthanassis, P. E., Giannakos, M. N., & Lekakos, G. (2017). The interplay of online shopping motivations and experiential factors on personalized e-commerce: A complexity theory approach. Telemat Inform, 34(5): 730-742.‏
  28. Pierrakos, D., Paliouras, G., Papatheodorou, C., & Spyropoulos, C. D. (2003). Web usage mining as a tool for personalization: A survey. User Model User-Adap, 13(4): 311-372.‏
  29. Rathi, P., & Singh, N. (2019). An efficient algorithm for data pre-processing and personalization in Web usage mining.‏ Int J Comput Sci. Eng, 7 (5): 160-164.
  30. Salman, R. H., Zaki, M., & Shiltag, N. A. (2020). A Studying Of Web Content Mining Tools. Al-Qadisiyah J Pure Sci, 25(2): 1-16.‏
  31. Salonen, V., & Karjaluoto, H. (2016). Web personalization: the state of the art and future avenues for research and practice. Telemat. Inform, 33(4): 1088-1104.‏
  32. Senkul, P., & Salin, S. (2012). Improving pattern quality in Web usage mining by using semantic information. Knowl Inf Syst, 30(3): 527-541.‏
  33. Shanthi, S. (2017). Survey on Web usage mining using association rule mining. Int J Innov Comput I. 4(3): 65-67.‏
  34. Sharma, S., & Rana, V. (2020). Web Search Personalization Using Semantic Similarity Measure. In Proce of ICRIC 2019 (pp. 273-288). Springer, Cham.‏
  35. Su, J. H., Yeh, H. H., Philip, S. Y., & Tseng, V. S. (2010). Music recommendation using content and context information mining. IEEE Intell. Syst, 25(1): 16-26.
  36. Sujatha, V. (2012). Improved user navigation pattern prediction technique from web log data. Procedia Engineering, 30, 92-99.
  37. Sun, L., & Zhang, X. (2004, April). Efficient frequent pattern mining on Web logs. In APWeb Conf. (pp. 533-542). Springer, Berlin, Heidelberg.‏
  38. Sunikka, A., & Bragge, J. (2012). Applying text-mining to personalization and customization research literature–Who, what and where? Expert Syst. Appl. 39(11): 10049-10058.‏
  39. Taherizadeh, S., & Moghadam, N. (2009). Integrating web content mining into web usage mining for finding patterns and predicting users’ behaviors. International Journal of Information Science and Management (IJISM), 7(1), 51-66.
  40. Kumar, V., & Thakur, R. S. (2018). Web usage mining: concept and applications at a glance. In Handbook Res Pattern Eng. Syst. Dev. Big Data Anal. (pp. 216-229). IGI Global.‏
  41. ‏Prathyusha, P., Kumari, B. A., Sumathi, M., & Rangaswamy, K. (2019). The Phases of Web Usage Mining for Classification and Pattern Analysis. J. Gujarat Res Soc, 21(16): 1082-1090.‏
  42. Velasquez, J. D. (2013). Combining eye-tracking technologies with Web usage mining for identifying website Key objects. Engineering Applications of Artificial Intelligence, 26(5-6), 1469-1478.‏
  43. Van Aartsen, B., El-Gayar, O., & Noteboom, C. (2020). A Systematic Review of Web Usage Mining Techniques and Future Research Options., Accessed 15 Feb 2020.
  44. Vijaiprabhu, G., & Meenakshisundaram, K. User Identification in Web Usage Mining using Data Mining Techniques with Nominal Distance Function and KD Tree. The International journal of analytical and experimental modal analysis. 2020; 12(7): 273-281.
  45. Yadav, M. P., Feeroz, M., & Yadav, V. K. (2012, July). Mining the customer behavior using Web usage mining in e-commerce. In 2012 3rd ICCCNT'12 (pp. 1-5). IEEE.
  46. Wu, X., Kumar, V., Quinlan, J. R., Ghosh, J., Yang, Q., Motoda, H.... & Zhou, Z. H. (2008). Top 10 algorithms in data mining. Knowl Inf Syst, 14(1): 1-37.
  47. Yilmaz, H., & Senkul, P. (2010, December). Using ontology and sequence information for extracting behavior patterns from Web navigation logs. In 2010 IEEE ICDM Workshop (pp. 549-556). IEEE.‏
  48. Zhang, X., Gong, W., & Kawamura, Y. (2004, April). Customer behavior pattern discovering with Web mining. In APWeb Conf. (pp. 844-853). Springer, Berlin, Heidelberg.‏