Abd Aziz, F. S., Abdullah, K. H. & Samsudin, S. (2021). Bibliometric analysis of behavior-based safety (BBS): Three decades publication trends. Webology, 18, 278-293. https://doi.org/10.14704/web/v18si02/web18072
Abdel-Aal, R. E. & Mangoud, A. M. (1996). Abductive machine learning for modeling and predicting the educational score in school health surveys. Methods of Information in Medicine, 35(03), 265-271. https://doi.org/10.1055/s-0038-1634655
Abdullah, K. H. & Abd Aziz, F. S. (2020). Safety behaviour in the Laboratory among university students. The Journal of Behavioral Science, 15(3), 51-65. Retrieved from https://so06.tci-thaijo.org/index.php/IJBS/article/view/241208
Abdullah, K. H., Hashim, M. N. & Abd Aziz, F. S. (2020). A 39 years (1980-2019) bibliometric analysis of safety leadership research. TEST Engineering and Management, 83, 4526-4542.
Ashok, M., Madan, R., Joha, A. & Sivarajah, U. (2022). Ethical framework for Artificial Intelligence and Digital technologies. International Journal of Information Management, 62, 1-17. https://doi.org/10.1016/j.ijinfomgt.2021.102433
Badri, A., Boudreau-Trudel, B. & Souissi, A. S. (2018). Occupational health and safety in the industry 4.0 era: A cause for major concern?. Safety Science, 109, 403-411. https://doi.org/10.1016/j.ssci.2018.06.012
Bas, G. & Koseoglu, M. A. (2019). Analysis of the warehouse work accidents in logistics sector. Press Academia Procedia, 9(1), 262-268. https://doi.org/10.17261/Pressacademia.2019.1102
Bini, S. A. (2018). Artificial intelligence, machine learning, deep learning, and cognitive computing: what do these terms mean and how will they impact health care?. The Journal of Arthroplasty, 33(8), 2358-2361. https://doi.org/10.1016/j.arth.2018.02.067
Bonifazi, G., Corradini, E., Ursino, D., Virgili, L., Anceschi, E. & De Donato, M. C. (2021). A machine learning based sentient multimedia framework to increase safety at work. Multimedia Tools and Applications, 81 (1), 141-169. https://doi.org/10.1007/s11042-021-10984-z
Dhawan, S. M., Gupta, B. M. & Singh, N. K. (2020). Global Machine-learning Research: a scientometric assessment of global literature during 2009–18. World Digital Libraries-An International Journal, 13(2), 105-120. https://doi.org/10.18329/09757597/2020/13209
Donthu, N., Kumar, S., Mukherjee, D., Pandey, N. & Lim, W. M. (2021). How to conduct a bibliometric analysis: An overview and guidelines. Journal of Business Research, 133, 285-296. https://doi.org/10.1016/j.jbusres.2021.04.070
Duan, Z. & Zhang, K. (2006). Data mining technology for structural health monitoring. Pacific Science Review, 8(1), 27-36.
El Naqa, I. & Murphy, M. J. (2015). What is machine learning?. In machine learning in radiation oncology (pp. 3-11). Springer, Cham. https://doi.org/10.1007/978-3-319-18305-3_1
Gianfrancesco, M. A., Tamang, S., Yazdany, J. & Schmajuk, G. (2018). Potential biases in machine learning algorithms using electronic health record data. JAMA Internal Medicine, 178(11), 1544-1547. https://doi.org/10.1001/jamainternmed.2018.3763
Goh, Y. C., Cai, X. Q., Theseira, W., Ko, G. & Khor, K. A. (2020). Evaluating human versus machine learning performance in classifying research abstracts. Scientometrics, 125(2), 1197-1212. https://doi.org/10.1007/s11192-020-03614-2
Gordan, M., Ismail, Z. B., Razak, H. A., Ghaedi, K. & Ghayeb, H. H. (2020). Optimisation-based evolutionary data mining techniques for structural health monitoring. Journal of Civil Engineering and Construction, 9(1), 14-23. https://doi.org/10.32732/jcec
Gordan, M., Sabbagh-Yazdi, S. R., Ismail, Z., Ghaedi, K., Carroll, P., McCrum, D. & Samali, B. (2022). State-of-the-art review on advancements of data mining in structural health monitoring. Measurement, 193, 1-38. https://doi.org/10.1016/j.measurement.2022.110939
Greener, J. G., Kandathil, S. M., Moffat, L. & Jones, D. T. (2022). A guide to machine learning for biologists. Nature Reviews Molecular Cell Biology, 23(1), 40-55. https://doi.org/10.1038/s41580-021-00407-0
Gul, M. & Ak, M. F. (2018). A comparative outline for quantifying risk ratings in occupational health and safety risk assessment. Journal of Cleaner Production, 196, 653-664. https://doi.org/10.1016/j.jclepro.2018.06.106
Hamet, P. & Tremblay, J. (2017). Artificial intelligence in medicine. Metabolism, 69, 36-40. https://doi.org/10.1016/j.metabol.2017.01.011
Heo, Seongbong, Moonil Kim, Hangnan Yu, Woo-Kyun Lee, Jong Ryeul Sohn, Soon-Young Jung, Kyong Whan Moon &Sang Hoon Byeon (2018). Chemical accident hazard assessment by spatial analysis of chemical factories and accident records in South Korea. International Journal of Disaster Risk Reduction, 27, 37-47. https://doi.org/10.1016/j.ijdrr.2017.09.016
Huang VS, Morris K, Jain M, Ramesh BM, Kemp H, Blanchard J, Isac S, Sarkar B, Gothalwal V, Namasivayam V & Kumar P. (2020). Closing the gap on institutional delivery in northern India: A case study of how integrated machine learning approaches can enable precision public health. BMJ Global Health, 5(10), 1-14. http://dx.doi.org/10.1136/bmjgh-2020-002340
Jayatilake, S. M. D. A. C. & Ganegoda, G. U. (2021). Involvement of machine learning tools in healthcare decision making. Journal of Healthcare Engineering, 2021, 1-20. https://doi.org/10.1155/2021/6679512
Jha, I. P., Awasthi, R., Kumar, A., Kumar, V. & Sethi, T. (2021). Learning the mental health impact of covid-19 in the united states with explainable artificial intelligence: Observational study. JMIR Mental Health, 8(4), 1-11. https://doi.org/10.2196/25097
Jiao, Z., Hu, P., Xu, H. & Wang, Q. (2020). Machine learning and deep learning in chemical health and safety: a systematic review of techniques and applications. ACS Chemical Health & Safety, 27(6), 316-334. https://dx.doi.org/10.1021/acs.chas.0c00075
Jordan, M. I., & Mitchell, T. M. (2015). Machine learning: Trends, perspectives, and prospects. Science, 349(6245), 255-260. https://doi.org/10.1126/science.aaa8415
Koklonis, K., Sarafidis, M., Vastardi, M. & Koutsouris, D. (2021). Utilisation of machine learning in supporting occupational safety and health decisions in hospital workplace. Engineering, Technology & Applied Science Research, 11(3), 7262-7272. http://dx.doi.org/10.48084/etasr.4205
Krstić, B., Rađenović, T. & Živković, S. (2022). Occupational Health and Safety Performance Management System: Conceptual Framework, Design, and Implementation in an Enterprise. In Handbook of Research on Key Dimensions of Occupational Safety and Health Protection Management (pp. 1-26). IGI Global. https://doi.org/10.4018/978-1-7998-8189-6.ch001
Lalmuanawma, S., Hussain, J. & Chhakchhuak, L. (2020). Applications of machine learning and artificial intelligence for Covid-19 (SARS-CoV-2) pandemic: A review. Chaos, Solitons & Fractals, 139, 110059. https://doi.org/10.1016/j.chaos.2020.110059
Liakos, K. G., Busato, P., Moshou, D., Pearson, S. & Bochtis, D. (2018). Machine learning in agriculture: A review. Sensors, 18(8), 1-29. https://doi.org/10.3390/s18082674
Maheronnaghsh, S., Zolfagharnasab, H., Gorgich, M. & Duarte, J. (2021). Machine learning in occupational safety and health: protocol for a systematic review. International Journal of Occupational and Environmental Safety, 5(1), 32-38. https://doi.org/10.24840/2184-0954_005.001_0004
Marcus, J. L., Hurley, L. B., Krakower, D. S., Alexeeff, S., Silverberg, M. J. & Volk, J. E. (2019). Use of electronic health record data and machine learning to identify candidates for HIV pre-exposure prophylaxis: a modelling study. The Lancet HIV, 6(10), 688-695. https://doi.org/10.1016/S2352-3018(19)30137-7
Martinez, S., del Mar Delgado, M., Marin, R. M. & Alvarez, S. (2019). Science mapping on the Environmental Footprint: A scientometric analysis-based review. Ecological Indicators, 106, 1-11. https://doi.org/10.1016/j.ecolind.2019.105543
Mingers, J. & Leydesdorff, L. (2015). A review of theory and practice in scientometrics. European Journal of Operational Research, 246(1), 1-19. https://doi.org/10.1016/j.ejor.2015.04.002
Mukhamediev, R. I., Symagulov, A., Kuchin, Y., Yakunin, K. & Yelis, M. (2021). From classical machine learning to deep neural networks: A simplified scientometric review. Applied Sciences, 11(12), 1-26. https://doi.org/10.3390/app11125541
Naeem M, Jamal T, Diaz-Martinez J, Butt SA, Montesano N, Tariq MI, De-la-Hoz-Franco E & De-La-Hoz-Valdiris E. (2022). Trends and future perspective challenges in big data. In Advances in Intelligent Data Analysis and Applications (pp. 309-325). Springer, Singapore. https://doi.org/10.1007/978-981-16-5036-9_30
Niu, X. S. (2014). International scientific collaboration between Australia and China: A mixed-methodology for investigating the social processes and its implications for national innovation systems. Technological Forecasting and Social Change, 85, 58-68. https://doi.org/10.1016/j.techfore.2013.10.014
Paltrinieri, N., Comfort, L. & Reniers, G. (2019). Learning about risk: Machine learning for risk assessment. Safety Science, 118, 475-486. https://doi.org/10.1016/j.ssci.2019.06.001
Poh, C. Q., Ubeynarayana, C. U. & Goh, Y. M. (2018). Safety leading indicators for construction sites: A machine learning approach. Automation in Construction, 93, 375-386. https://doi.org/10.1016/j.autcon.2018.03.022
Ruiz-Rosero, J., Ramírez-González, G. & Viveros-Delgado, J. (2019). Software survey: ScientoPy, a scientometric tool for topics trend analysis in scientific publications. Scientometrics, 121(2), 1165-1188. https://doi.org/10.1007/s11192-019-03213-w
Sachs, L. (1990). Safety and risk in a context of culture. International Journal of Risk & Safety in Medicine, 1(4), 255-265. https://doi.org/10.3233/jrs-1990-1402
Sarkar, S. & Maiti, J. (2020). Machine learning in occupational accident analysis: A review using science mapping approach with citation network analysis. Safety Science, 131, 1-25. https://doi.org/10.1016/j.ssci.2020.104900
Shao, B., Hu, Z., Liu, Q., Chen, S. & He, W. (2019). Fatal accident patterns of building construction activities in China. Safety Science, 111, 253-263. https://doi.org/10.1016/j.ssci.2018.07.019
Siegel, E. (2019, February 2). Five Ways Your Safety Depends on Machine Learning. KDnuggets. Retrieved from https://www.kdnuggets.com/2019/02/dr-data-five-ways-safety-depends-machine-learning.html
Simsekler, M. C. E., Rodrigues, C., Qazi, A., Ellahham, S. & Ozonoff, A. (2021). A comparative study of patient and staff safety evaluation using tree-based machine learning algorithms. Reliability Engineering & System Safety, 208, 1-13. https://doi.org/10.1016/j.ress.2020.107416
Sirola, M. & Hulsund, J. E. (2021). Machine-Learning Methods in Prognosis of Ageing Phenomena in Nuclear Power Plant Components. International Scientific Journal of Computing, 20(1), 11-21. https://doi.org/10.47839/ijc.20.1.2086
Sofyan, D. & Abdullah, K. H. (2022). Scientific developments in educational innovation research in Indonesia and Malaysia: a scientometric review. International Journal of Educational Innovation and Research, 1(1), 42-51. https://doi.org/10.31949/ijeir.v1i1.2312
Stahl BC, Andreou A, Brey P, Hatzakis T, Kirichenko A, Macnish K, Shaelou SL, Patel A, Ryan M & Wright D. (2021). Artificial intelligence for human flourishing–Beyond principles for machine learning. Journal of Business Research, 124, 374-388. https://doi.org/10.1016/j.jbusres.2020.11.030
Surya, L. (2016). An exploratory study of Machine Learning and it’s future in the United States. International Journal of Creative Research Thoughts (IJCRT), 4(1), 862-866.
Tang, S. & Golparvar-Fard, M. (2021). Machine learning-based risk analysis for construction worker safety from ubiquitous site photos and videos. Journal of Computing in Civil Engineering, 35(6), 1-19. https://doi.org/10.1061/(asce)cp.1943-5487.0000979
Trung, N. D., Huy, D. T. N. & Le, T. H. (2021). IoTs, machine learning (ML), AI and digital transformation affects various industries-principles and cybersecurity risks solutions. Webology, 18, 501-513. https://doi.org/10.14704/web/v18si04/web18144
Tullu, M. S. (2019). Writing the title and abstract for a research paper: Being concise, precise, and meticulous is the key. Saudi Journal of Anaesthesia, 13(Suppl 1), 12-17. https://doi.org/10.4103/sja.sja_685_18
Van Nunen, K., Li, J., Reniers, G. & Ponnet, K. (2018). Bibliometric analysis of safety culture research. Safety Science, 108, 248-258. https://doi.org/10.1016/j.ssci.2017.08.011
Van, T. N. & Quoc, T. N. (2021). Research Trends on Machine Learning in Construction Management: A Scientometric Analysis.
Journal of Applied Science and Technology Trends, 2(03), 96-104.
https://doi.org/10.38094/jastt203105
Vardakas, K. Z., Tsopanakis, G., Poulopoulou, A. & Falagas, M. E. (2015). An analysis of factors contributing to PubMed’s growth. Journal of Informetrics, 9(3), 592-617. https://doi.org/10.1016/j.joi.2015.06.001
Varshney, K. R. (2016, January). Engineering safety in machine learning. In 2016 Information Theory and Applications Workshop (ITA) (pp. 1-5). IEEE. https://doi.org/10.1109/ita.2016.7888195
Wiens J, Saria S, Sendak M, Ghassemi M, Liu VX, Doshi-Velez F, Jung K, Heller K, Kale D, Saeed M & Ossorio PN (2019). Do no harm: a roadmap for responsible machine learning for health care. Nature Medicine, 25(9), 1337-1340. https://doi.org/10.1038/s41591-019-0548-6
Woolley, R., Turpin, T., Marceau, J. & Hill, S. (2008). Mobility matters: Research training and network building in science. Comparative Technology Transfer and Society, 6(3), 159-184. https://doi.org/10.1353/ctt.0.0014
Yang, W., Fidelis, T. T. & Sun, W. H. (2019). Machine learning in catalysis, from proposal to practicing. ACS omega, 5(1), 83-88. https://doi.org/10.1021/acsomega.9b03673
Yong, Z., Xiaoming, Z. & Alshehri, M. D. (2021). A machine learning-enabled intelligent application for public health and safety. Neural Computing and Applications, 1-14. https://doi.org/10.1007/s00521-021-06301-2
Zhu, R., Hu, X., Hou, J. & Li, X. (2021). Application of machine learning techniques for predicting the consequences of construction accidents in China. Process Safety and Environmental Protection, 145, 293-302. https://doi.org/10.1016/j.psep.2020.08.006
Zhu, Y., Kim, D., Yan, E., Kim, M. C. & Qi, G. (2021). Analysing China’s research collaboration with the United States in high-impact and high-technology research. Quantitative Science Studies, 2(1), 363-375. https://doi.org/10.1162/qss_a_00098