Document Type : Articles


1 Universiti Teknologi MARA

2 Universitas Majalengka


Safety and health are intricately interwoven and have become indispensable to the thriving business world and anthropology. It is concerned with ensuring employees’ physical, emotional, and mental well-being. Based on the Scopus and Web of Science databases, the current study intends to analyse the global research output on machine learning in safety and health. This study utilized ScientoPy and VOSviewer to delve into the annual growth, patterns of research communication on source titles, international collaboration among countries, and authors’ keyword analysis. This study found that the Web of Science database tracks the evolution of publications throughout time. PLoS One has surpassed all other source titles in terms of publishing activity. Also, this study indicated that US researchers are constantly working on machine learning in safety and health research and have developed significant collaborations with China and Australia. Between 2020 and 2021, the University of Toronto published 86% of all papers, outpacing other institutions.  The keywords “machine learning”, “artificial intelligence”, “electronic health records”, “deep learning”, and “mental health” were the most popular and trending keywords in 2020 and 2021, and “artificial intelligence” appeared in most publications among others. Future researchers should conduct scoping or systematic literature reviews to elucidate the relationships between these terms. This study may entice the curiosity of practitioners and researchers to advance new knowledge in this field by being devoted to cutting-edge research in the contemporary philosophy of science, cognitive, and cultural anthropology on machine learning in safety and health research. In conclusion, this scientometric analysis demonstrates that machine learning in safety and health is a study domain that requires further refinement in future research, as this technology has the potential to significantly improve workplace safety and health through targeted applications with clear benefits.


Main Subjects

Abd Aziz, F. S., Abdullah, K. H. & Samsudin, S. (2021). Bibliometric analysis of behavior-based safety (BBS): Three decades publication trends. Webology18, 278-293.
Abdel-Aal, R. E. & Mangoud, A. M. (1996). Abductive machine learning for modeling and predicting the educational score in school health surveys. Methods of Information in Medicine, 35(03), 265-271.
Abdullah, K. H. & Abd Aziz, F. S. (2020). Safety behaviour in the Laboratory among university students. The Journal of Behavioral Science15(3), 51-65. Retrieved from
Abdullah, K. H., Hashim, M. N. & Abd Aziz, F. S. (2020). A 39 years (1980-2019) bibliometric analysis of safety leadership research. TEST Engineering and Management, 83, 4526-4542. 
Ashok, M., Madan, R., Joha, A. & Sivarajah, U. (2022). Ethical framework for Artificial Intelligence and Digital technologies. International Journal of Information Management, 62, 1-17.
Badri, A., Boudreau-Trudel, B. & Souissi, A. S. (2018). Occupational health and safety in the industry 4.0 era: A cause for major concern?. Safety Science, 109, 403-411.
Bas, G. & Koseoglu, M. A. (2019). Analysis of the warehouse work accidents in logistics sector. Press Academia Procedia, 9(1), 262-268.
Bini, S. A. (2018). Artificial intelligence, machine learning, deep learning, and cognitive computing: what do these terms mean and how will they impact health care?. The Journal of Arthroplasty, 33(8), 2358-2361.
Bonifazi, G., Corradini, E., Ursino, D., Virgili, L., Anceschi, E. & De Donato, M. C. (2021). A machine learning based sentient multimedia framework to increase safety at work. Multimedia Tools and Applications, 81 (1), 141-169.
Dhawan, S. M., Gupta, B. M. & Singh, N. K. (2020). Global Machine-learning Research: a scientometric assessment of global literature during 2009–18. World Digital Libraries-An International Journal, 13(2), 105-120.
Donthu, N., Kumar, S., Mukherjee, D., Pandey, N. & Lim, W. M. (2021). How to conduct a bibliometric analysis: An overview and guidelines. Journal of Business Research, 133, 285-296.
Duan, Z. & Zhang, K. (2006). Data mining technology for structural health monitoring. Pacific Science Review, 8(1), 27-36.
El Naqa, I. & Murphy, M. J. (2015). What is machine learning?. In machine learning in radiation oncology (pp. 3-11). Springer, Cham.
Gianfrancesco, M. A., Tamang, S., Yazdany, J. & Schmajuk, G. (2018). Potential biases in machine learning algorithms using electronic health record data. JAMA Internal Medicine, 178(11), 1544-1547.
Goh, Y. C., Cai, X. Q., Theseira, W., Ko, G. & Khor, K. A. (2020). Evaluating human versus machine learning performance in classifying research abstracts. Scientometrics, 125(2), 1197-1212.
Gordan, M., Ismail, Z. B., Razak, H. A., Ghaedi, K. & Ghayeb, H. H. (2020). Optimisation-based evolutionary data mining techniques for structural health monitoring. Journal of Civil Engineering and Construction, 9(1), 14-23.
Gordan, M., Sabbagh-Yazdi, S. R., Ismail, Z., Ghaedi, K., Carroll, P., McCrum, D. & Samali, B. (2022). State-of-the-art review on advancements of data mining in structural health monitoring. Measurement, 193, 1-38.
Greener, J. G., Kandathil, S. M., Moffat, L. & Jones, D. T. (2022). A guide to machine learning for biologists. Nature Reviews Molecular Cell Biology, 23(1), 40-55.
Gul, M. & Ak, M. F. (2018). A comparative outline for quantifying risk ratings in occupational health and safety risk assessment. Journal of Cleaner Production, 196, 653-664.
Hamet, P. & Tremblay, J. (2017). Artificial intelligence in medicine. Metabolism, 69, 36-40.
Heo, Seongbong, Moonil Kim, Hangnan Yu, Woo-Kyun Lee, Jong Ryeul Sohn, Soon-Young Jung, Kyong Whan Moon  &Sang Hoon Byeon (2018). Chemical accident hazard assessment by spatial analysis of chemical factories and accident records in South Korea. International Journal of Disaster Risk Reduction, 27, 37-47.
Huang VS, Morris K, Jain M, Ramesh BM, Kemp H, Blanchard J, Isac S, Sarkar B, Gothalwal V, Namasivayam V &  Kumar P. (2020). Closing the gap on institutional delivery in northern India: A case study of how integrated machine learning approaches can enable precision public health. BMJ Global Health, 5(10), 1-14.
Jayatilake, S. M. D. A. C. & Ganegoda, G. U. (2021). Involvement of machine learning tools in healthcare decision making. Journal of Healthcare Engineering, 2021, 1-20.
Jha, I. P., Awasthi, R., Kumar, A., Kumar, V. & Sethi, T. (2021). Learning the mental health impact of covid-19 in the united states with explainable artificial intelligence: Observational study. JMIR Mental Health, 8(4), 1-11.
Jiao, Z., Hu, P., Xu, H. & Wang, Q. (2020). Machine learning and deep learning in chemical health and safety: a systematic review of techniques and applications. ACS Chemical Health & Safety, 27(6), 316-334.
Jordan, M. I., & Mitchell, T. M. (2015). Machine learning: Trends, perspectives, and prospects. Science, 349(6245), 255-260.
Koklonis, K., Sarafidis, M., Vastardi, M. & Koutsouris, D. (2021). Utilisation of machine learning in supporting occupational safety and health decisions in hospital workplace. Engineering, Technology & Applied Science Research, 11(3), 7262-7272.
Krstić, B., Rađenović, T. & Živković, S. (2022). Occupational Health and Safety Performance Management System: Conceptual Framework, Design, and Implementation in an Enterprise. In Handbook of Research on Key Dimensions of Occupational Safety and Health Protection Management (pp. 1-26). IGI Global.
Lalmuanawma, S., Hussain, J. & Chhakchhuak, L. (2020). Applications of machine learning and artificial intelligence for Covid-19 (SARS-CoV-2) pandemic: A review. Chaos, Solitons & Fractals, 139, 110059.
Liakos, K. G., Busato, P., Moshou, D., Pearson, S. & Bochtis, D. (2018). Machine learning in agriculture: A review. Sensors, 18(8), 1-29.
Maheronnaghsh, S., Zolfagharnasab, H., Gorgich, M. & Duarte, J. (2021). Machine learning in occupational safety and health: protocol for a systematic review. International Journal of Occupational and Environmental Safety, 5(1), 32-38.
Marcus, J. L., Hurley, L. B., Krakower, D. S., Alexeeff, S., Silverberg, M. J. & Volk, J. E. (2019). Use of electronic health record data and machine learning to identify candidates for HIV pre-exposure prophylaxis: a modelling study. The Lancet HIV, 6(10), 688-695.
Martinez, S., del Mar Delgado, M., Marin, R. M. & Alvarez, S. (2019). Science mapping on the Environmental Footprint: A scientometric analysis-based review. Ecological Indicators, 106, 1-11.
Mingers, J. & Leydesdorff, L. (2015). A review of theory and practice in scientometrics. European Journal of Operational Research, 246(1), 1-19.
Mukhamediev, R. I., Symagulov, A., Kuchin, Y., Yakunin, K. & Yelis, M. (2021). From classical machine learning to deep neural networks: A simplified scientometric review. Applied Sciences, 11(12), 1-26.
Naeem M, Jamal T, Diaz-Martinez J, Butt SA, Montesano N, Tariq MI, De-la-Hoz-Franco E & De-La-Hoz-Valdiris E.  (2022). Trends and future perspective challenges in big data. In Advances in Intelligent Data Analysis and Applications (pp. 309-325). Springer, Singapore.
Niu, X. S. (2014). International scientific collaboration between Australia and China: A mixed-methodology for investigating the social processes and its implications for national innovation systems. Technological Forecasting and Social Change, 85, 58-68.
Paltrinieri, N., Comfort, L. & Reniers, G. (2019). Learning about risk: Machine learning for risk assessment. Safety Science, 118, 475-486.
Poh, C. Q., Ubeynarayana, C. U. & Goh, Y. M. (2018). Safety leading indicators for construction sites: A machine learning approach. Automation in Construction, 93, 375-386.
Ruiz-Rosero, J., Ramírez-González, G. & Viveros-Delgado, J. (2019). Software survey: ScientoPy, a scientometric tool for topics trend analysis in scientific publications. Scientometrics, 121(2), 1165-1188.
Sachs, L. (1990). Safety and risk in a context of culture. International Journal of Risk & Safety in Medicine, 1(4), 255-265.
Sarkar, S. & Maiti, J. (2020). Machine learning in occupational accident analysis: A review using science mapping approach with citation network analysis. Safety Science, 131, 1-25.
Shao, B., Hu, Z., Liu, Q., Chen, S. & He, W. (2019). Fatal accident patterns of building construction activities in China. Safety Science, 111, 253-263.
Siegel, E. (2019, February 2). Five Ways Your Safety Depends on Machine Learning. KDnuggets. Retrieved from
Simsekler, M. C. E., Rodrigues, C., Qazi, A., Ellahham, S. & Ozonoff, A. (2021). A comparative study of patient and staff safety evaluation using tree-based machine learning algorithms. Reliability Engineering & System Safety, 208, 1-13.
Sirola, M. & Hulsund, J. E. (2021). Machine-Learning Methods in Prognosis of Ageing Phenomena in Nuclear Power Plant Components. International Scientific Journal of Computing, 20(1), 11-21.
Sofyan, D. & Abdullah, K. H. (2022). Scientific developments in educational innovation research in Indonesia and Malaysia: a scientometric review. International Journal of Educational Innovation and Research, 1(1), 42-51.
Stahl BC, Andreou A, Brey P, Hatzakis T, Kirichenko A, Macnish K, Shaelou SL, Patel A, Ryan M & Wright D.  (2021). Artificial intelligence for human flourishing–Beyond principles for machine learning. Journal of Business Research, 124, 374-388.
Surya, L. (2016). An exploratory study of Machine Learning and it’s future in the United States. International Journal of Creative Research Thoughts (IJCRT), 4(1), 862-866.
Tang, S. & Golparvar-Fard, M. (2021). Machine learning-based risk analysis for construction worker safety from ubiquitous site photos and videos. Journal of Computing in Civil Engineering, 35(6), 1-19.
Trung, N. D., Huy, D. T. N. & Le, T. H. (2021). IoTs, machine learning (ML), AI and digital transformation affects various industries-principles and cybersecurity risks solutions.  Webology, 18, 501-513.
Tullu, M. S. (2019). Writing the title and abstract for a research paper: Being concise, precise, and meticulous is the key. Saudi Journal of Anaesthesia, 13(Suppl 1), 12-17.
Van Nunen, K., Li, J., Reniers, G. & Ponnet, K. (2018). Bibliometric analysis of safety culture research. Safety Science, 108, 248-258.
Van, T. N. & Quoc, T. N. (2021). Research Trends on Machine Learning in Construction Management: A Scientometric Analysis. Journal of Applied Science and Technology Trends, 2(03), 96-104.
Vardakas, K. Z., Tsopanakis, G., Poulopoulou, A. & Falagas, M. E. (2015). An analysis of factors contributing to PubMed’s growth. Journal of Informetrics, 9(3), 592-617.
Varshney, K. R. (2016, January). Engineering safety in machine learning. In 2016 Information Theory and Applications Workshop (ITA) (pp. 1-5). IEEE.
Wiens J, Saria S, Sendak M, Ghassemi M, Liu VX, Doshi-Velez F, Jung K, Heller K, Kale D, Saeed M & Ossorio PN (2019). Do no harm: a roadmap for responsible machine learning for health care. Nature Medicine, 25(9), 1337-1340.
Woolley, R., Turpin, T., Marceau, J. & Hill, S. (2008). Mobility matters: Research training and network building in science. Comparative Technology Transfer and Society, 6(3), 159-184.
Yang, W., Fidelis, T. T. & Sun, W. H. (2019). Machine learning in catalysis, from proposal to practicing. ACS omega, 5(1), 83-88.
Yong, Z., Xiaoming, Z. & Alshehri, M. D. (2021). A machine learning-enabled intelligent application for public health and safety. Neural Computing and Applications, 1-14.
Zhu, R., Hu, X., Hou, J. & Li, X. (2021). Application of machine learning techniques for predicting the consequences of construction accidents in China. Process Safety and Environmental Protection, 145, 293-302.
Zhu, Y., Kim, D., Yan, E., Kim, M. C. & Qi, G. (2021). Analysing China’s research collaboration with the United States in high-impact and high-technology research. Quantitative Science Studies, 2(1), 363-375.