An, Y., Han, M. & Park, Y. (2017). Identifying dynamic knowledge flow patterns of business method patents with a hidden Markov model.
Scientometrics, 113, 783-802.
http://doi.org.10.1007/s11192-017-2514-8
Ashton, W. B., Kinzey, B. R. & Gunn, M. E. (1991). A structured approach for monitoring science and technology developments.
International Journal of Technology Management, 6(1-2), 91-111.
http://doi.org.10.1504/IJTM.1991.025877
Azar, S. G. & Seyedarabi, H. (2020). Trajectory-based recognition of dynamic Persian sign language using hidden Markov model.
Computer Speech & Language, 61, 101053.
https://doi.org/10.1016/j.csl.2019.101053
Chen, Y. H., Chen, C. Y. & Lee, S. C. (2011). Technology forecasting and patent strategy of hydrogen energy and fuel cell technologies.
International Journal of Hydrogen Energy, 36(12), 6957-6969.
https://doi.org/10.1016/j.ijhydene.2011.03.063
Chesbrough, H. W., Vanhaverbeke, W. & West, J. (2008). Open Innovation: Researching a New Paradigm. United Kingdom: Oxford University Press. Retrieved from
Choi, C., Kim, S. & Park, Y. (2007). A patent-based cross impact analysis for quantitative estimation of technological impact: The case of information and communication technology.
Technological Forecasting and Social Change, 74(8), 1296-1314.
http://dx.doi.org/10.1016/j.techfore.2006.10.008
Daim, T. U., Rueda, G., Martin, H. & Gerdsri, P. (2006). Forecasting emerging technologies: Use of bibliometrics and patent analysis.
Technological Forecasting and Social Change, 73(8), 981-1012.
https://doi.org/10.1016/j.techfore.2006.04.004
Debackere, K., Verbeek, A., Luwel, M. & Zimmermann, E. (2002). Measuring progress and evolution in science and technology–II: The multiple uses of technometric indicators.
International Journal of Management Reviews, 4(3), 213-231.
http://doi.org/10.1111/1468-2370.00085
Dehghani Madvar, M., Ahmadi, F., Shirmohammadi, R. & Aslani, A. (2019). Forecasting of wind energy technology domains based on the technology life cycle approach.
Energy Reports, 5, 1236-1248.
https://doi.org/10.1016/j.egyr.2019.08.069
Ernst, H. (1997). The use of patent data for technological forecasting: the diffusion of CNC-technology in the machine tool industry. Small Business Economics, 9(4), 361-381.
Fadavi Hoseini, F. & Mansouri, A. (2022) The Role of Articles in Science–Technology Relationship: A Topic Analysis of Non-patent Literature (NPL) References,
Serials Review, 48(1-2), 137-150.
https://doi.org/10.1080/00987913.2022.2127403
Gao, L., Porter, A. L., Wang, J., Fang, S., Zhang, X., Ma, T., Wang, W. & Huang, L. (2013). Technology life cycle analysis method based on patent documents. Technological Forecasting and Social Change, 80(3), 398-407.
Geum, Y., Lee, S., Yoon, B. & Park, Y. (2013). Identifying and evaluating strategic partners for collaborative R&D: Index-based approach using patents and publications. Technovation, 33(6-7), 211-224.
Glenn. J. C. & Gordon, T. J. (2009). Futures Research Methodology. 3.0 edition. The Millennium Project Publication.
Haupt, R., Kloyer, M. & Lange, M. (2007). Patent indicators for the technology life cycle development. Research Policy, 36(3), 387-398.
Hosseini Bamakan, S. M., Babaei Bondarti, A., Babaei Bondarti, P. & Qu, Q. (2021). Blockchain technology forecasting by patent analytics and text mining.
Blockchain: Research and Applications, 2(2), 100019.
http://doi.org/10.1016/j.bcra.2021.100019
Jee, S. J., Kwon, M., Ha, J. M. & Sohn, S. Y. (2019). Exploring the forward citation patterns of patents based on the evolution of technology fields.
Journal of Informetrics, 13(4), 100985.
https://doi.org/10.1016/j.joi.2019.100985
Joung, J. & Kim, K. (2017). Monitoring emerging technologies for technology planning using technical keyword based analysis from patent data.
Technological Forecasting and Social Change, 114, 281-292.
https://doi.org/10.1016/j.techfore.2016.08.020
Jun, S. & Lee, S. J. (2012). Emerging technology forecasting using new patent information analysis.
International Journal of Software Engineering and Its Applications, 6(3), 107-116. Retrieved from
https://www.earticle.net/Article/A208384
Jun, S., Park, S. S. & Jang, D. S. (2012). Technology forecasting using matrix map and patent clustering. Industrial Management & Data Systems, 112(5), 786-807.
Khalil, T (2000). Management of Technology: The key to competitiveness and wealth creation, (pp. 126-140). McGraw-Hill Publication.
Kim, J. & Lee, S. (2017). Forecasting and identifying multi-technology convergence based on patent data: The case of IT and BT industries in 2020.
Scientometrics, 111(1), 47-65.
https://doi.org/10.1007/s11192-017-2275-4
Kim, Y. G., Suh, J. H. & Park, S. C. (2008). Visualization of patent analysis for emerging technology. Expert systems with applications, 34(3), 1804-1812.
Krestel, R., Chikkamath, R., Hewel, C & Risch, J. (2021). A survey on deep learning for patent analysis. World Patent Information, 65, 102035.
Kucharavy, D., Damand, D. & Barth, M. (2022). Technological forecasting using mixed methods approach. International Journal of Production Research, 1-25.
Lee, C., Kim, J., Noh, M., Woo, H. G. & Gang, K. (2017). Patterns of technology life cycles: Stochastic analysis based on patent citations.
Technology Analysis & Strategic Management, 29(1), 53-67.
https://doi.org/10.1080/09537325.2016.1194974
Lee, H. J., Lee, S. & Yoon, B. (2011). Technology clustering based on evolutionary patterns: The case of information and communications technologies.
Technological Forecasting and Social Change, 78(6), 953-967.
https://doi.org/10.1016/j.techfore.2011.02.002
Lee, K., Go, D., Park, I. & Yoon, B. (2017). Exploring suitable technology for small and medium-sized enterprises (SMEs) based on a hidden Markov model using patent information and value chain analysis. Sustainability, 9(7), 1100.
Lee, S., Lee, H. J. & Yoon, B. (2012). Modeling and analyzing technology innovation in the energy sector: Patent-based HMM approach.
Computers & Industrial Engineering, 63(3), 564-577.
https://doi.org/10.1016/j.cie.2011.12.002
Lee, S., Yoon, B. & Park, Y. (2009). An approach to discovering new technology opportunities: Keyword-based patent map approach. Technovation, 29(6-7), 481-497.
Little, A. D. (1981). The strategic management of technology. Cambridge publication.
Mao, G., Han, Y., Liu, X., Crittenden, J., Huang, N. & Ahmad, U. M. (2022). Technology status and trends of industrial wastewater treatment: A patent analysis.
Chemosphere, 288 (Part 2), 132483.
http://doi.org/ 10.1016/j.chemosphere.2021.132483
McGahan, A. M. & Silverman, B. S. (2001). How does innovative activity change as industries mature? International Journal of Industrial Organization, 19(7), 1141-1160.
Milanez, D. H., de Faria, L. I. L., do Amaral, R. M., Leiva, D. R. & Gregolin, J. A. R. (2014). Patents in nanotechnology: an analysis using macro-indicators and forecasting curves.
Scientometrics, 101(2), 1097-1112.
https://doi.org/10.1007/s11192-014-1244-4
Momeni, A. & Rost, K. (2016). Identification and monitoring of possible disruptive technologies by patent-development paths and topic modeling.
Technological Forecasting and Social Change, 104, 16-29.
https://doi.org/10.1016/j.techfore.2015.12.003
Rezaeian, M., Montazeri, H. & Loonen, R. C. G. M. (2017). Science foresight using life-cycle analysis, text mining and clustering: A case study on natural ventilation.
Technological Forecasting and Social Change, 118, 270-280.
https://doi.org/10.1016/j.techfore.2017.02.027
Rowe, G. & Wright, G. (1999). The Delphi technique as a forecasting tool: issues and analysis. International journal of forecasting, 15(4), 353-375.
Shibata, N., Kajikawa, Y., Takeda, Y. & Matsushima, K. (2008). Detecting emerging research fronts based on topological measures in citation networks of scientific publications. Technovation, 28(11), 758-775.
Suryadi, K., Salimridwan, A., Dou, H. & Purnama, A. (1999). Technology forecasting in competitive intelligence: The use of patents analysis. International Journal of Information Sciences for Decision Making (Print), 3, 1-6. Retrieved from:
Trappey, C. V., Wu, H. Y., Taghaboni-Dutta, F. & Trappey, A. J. (2011). Using patent data for technology forecasting: China RFID patent analysis.
Advanced Engineering Informatics, 25(1), 53-64.
https://doi.org/10.1016/j.aei.2010.05.007
Tseng, Y. H., Lin, C. J. & Lin, Y. I. (2007). Text mining techniques for patent analysis. Information Processing & Management, 43(5), 1216-1247.
Uhm, D., Ryu, J. B. & Jun, S. (2017). An interval estimation method of patent keyword data for sustainable technology forecasting. Sustainability, 9(11), 2025.
Woodland, P. C. & Povey, D. (2002). Large scale discriminative training of hidden Markov models for speech recognition. Computer Speech & Language, 16(1), 25-47.
World Health Organization (2016). WHO global model regulatory framework for 5 medical devices 6 including vitro diagnostic medical devices. Retrieved from
Wu, C. C. & Leu, H. J. (2014). Examining the trends of technological development in hydrogen energy using patent co-word map analysis. International Journal of Hydrogen Energy, 39(33), 19262-19269.
Wu, J., Wei, Y., Chen, Y., Long, Y., Huang, N. & Mei, Y. (2021). Chinese patent medicine for functional dyspepsia effects: A protocol for systematic review and Bayesian network meta-analysis. Medicine, 100(47), e27761.
Wu, Y. C. J. & Lee, P. J. (2007). The use of patent analysis in assessing ITS innovations: US, Europe and Japan.
Transportation Research Part A: Policy and Practice, 41(6), 568-586.
https://doi.org/10.1016/j.tra.2006.11.007
Yoon, B. C. & Park, Y. T. (2004). Morphology analysis approach for technology forecasting. In 2004 IEEE International Engineering Management Conference (IEEE Cat. No. 04CH37574) (Vol. 2, pp. 566-570). IEEE Publisher.
Yoon, B. & Park, Y. (2007). Development of new technology forecasting algorithm: Hybrid approach for morphology analysis and conjoint analysis of patent information. IEEE Transactions on Engineering Management, 54(3), 588-599.