Document Type : Articles

Authors

1 Associate Prof., Department of Knowledge and Information Science University of Isfahan, Isfahan, Iran.

2 MS in Knowledge and Information Science, Isfahan Science & Technology Town, Isfahan University of Technology, Isfahan, Iran.

Abstract

The primary purpose of the present study is to determine the life cycle and technology prediction based on patent bibliometric data using Markov hidden model. The study population included 50,915 patent licenses in medical equipment extracted from the US Patent and Trademark Office database from 1976 to 2015. The study findings revealed technology life cycle patterns in 21 medical equipment sub-areas. The status of medical device patent license indicators at different stages of the technology life cycle, alongside the likelihood of state transfer at different stages of the medical technology life cycle, were investigated. Ultimately, the results showed that "Drug delivery equipment, Disposable medical equipment, Oximeters, and Sharps (Medical instruments)" have more suitable areas for investment and commercialization. The current research results can also provide a good insight into technologies and can be used as a guide alongside experts and other decision-making methods.

Keywords

Adamuthe, A. C. & Thampi, G. T. (2019). Technology forecasting: A case study of computational technologies. Technological Forecasting and Social Change, 143, 181-189. https://doi.org/10.1016/j.techfore.2019.03.002
Agarwal, R. (1998). Evolutionary trends of industry variables. International Journal of Industrial Organization, 16(4), 511-525. https://doi.org/10.1016/S0167-7187(97)00004-0
An, Y., Han, M. & Park, Y. (2017). Identifying dynamic knowledge flow patterns of business method patents with a hidden Markov model. Scientometrics, 113, 783-802. http://doi.org.10.1007/s11192-017-2514-8
Ashton, W. B., Kinzey, B. R. & Gunn, M. E. (1991). A structured approach for monitoring science and technology developments. International Journal of Technology Management, 6(1-2), 91-111. http://doi.org.10.1504/IJTM.1991.025877
Azar, S. G. & Seyedarabi, H. (2020). Trajectory-based recognition of dynamic Persian sign language using hidden Markov model. Computer Speech & Language, 61, 101053. https://doi.org/10.1016/j.csl.2019.101053
Bengisu, M. & Nekhili, R. (2006). Forecasting emerging technologies with the aid of science and technology databases. Technological Forecasting and Social Change, 73(7), 835-844. https://doi.org/10.1016/j.techfore.2005.09.001
Chen, Y. H., Chen, C. Y. & Lee, S. C. (2011). Technology forecasting and patent strategy of hydrogen energy and fuel cell technologies. International Journal of Hydrogen Energy, 36(12), 6957-6969. https://doi.org/10.1016/j.ijhydene.2011.03.063
Chesbrough, H. W., Vanhaverbeke, W. & West, J. (2008). Open Innovation: Researching a New Paradigm. United Kingdom: Oxford University Press. Retrieved from
Choi, C., Kim, S. & Park, Y. (2007). A patent-based cross impact analysis for quantitative estimation of technological impact: The case of information and communication technology. Technological Forecasting and Social Change, 74(8), 1296-1314. http://dx.doi.org/10.1016/j.techfore.2006.10.008
Churchill, G. A. (1989). Stochastic models for heterogeneous DNA sequences. Bulletin of  Mathematical Biology, 51(1), 79-94.  http://doi.org/10.1007/BF02458837
Daim, T. U., Rueda, G., Martin, H. & Gerdsri, P. (2006). Forecasting emerging technologies: Use of bibliometrics and patent analysis. Technological Forecasting and Social Change, 73(8), 981-1012. https://doi.org/10.1016/j.techfore.2006.04.004
Dash, G. & Paul, J. (2021). CB-SEM vs PLS-SEM methods for research in social sciences and technology forecasting. Technological Forecasting and Social Change, 173, 121092. https://doi.org/10.1016/j.techfore.2021.121092
 
Debackere, K., Verbeek, A., Luwel, M. & Zimmermann, E. (2002). Measuring progress and evolution in science and technology–II: The multiple uses of technometric indicators. International Journal of Management Reviews, 4(3), 213-231. http://doi.org/10.1111/1468-2370.00085
Dehghani Madvar, M., Ahmadi, F., Shirmohammadi, R. & Aslani, A. (2019). Forecasting of wind energy technology domains based on the technology life cycle approach. Energy Reports, 5, 1236-1248. https://doi.org/10.1016/j.egyr.2019.08.069
Dubarić, E., Giannoccaro, D., Bengtsson, R. & Ackermann, T. (2011). Patent data as indicators of wind power technology development. World Patent Information, 33(2), 144-149. https://doi.org/10.1016/j.foodhyd.2010.12.005
Ernst, H. (1997). The use of patent data for technological forecasting: the diffusion of CNC-technology in the machine tool industry. Small Business Economics, 9(4), 361-381.
Fadavi Hoseini, F. & Mansouri, A. (2022) The Role of Articles in Science–Technology Relationship: A Topic Analysis of Non-patent Literature (NPL) References, Serials Review, 48(1-2), 137-150. https://doi.org/10.1080/00987913.2022.2127403
Fahey, L., King, W. R. & Narayanan, V. K. (1981). Environmental scanning and forecasting in strategic planning-the state of the art. Long Range Planning, 14(1), 32-39. https://doi.org/10.1016/0024-6301(81)90148-5
Gao, L., Porter, A. L., Wang, J., Fang, S., Zhang, X., Ma, T., Wang, W. & Huang, L. (2013). Technology life cycle analysis method based on patent documents. Technological Forecasting and Social Change, 80(3), 398-407.
Geum, Y., Lee, S., Yoon, B. & Park, Y. (2013). Identifying and evaluating strategic partners for collaborative R&D: Index-based approach using patents and publications. Technovation, 33(6-7), 211-224.
Glenn. J. C. & Gordon, T. J. (2009). Futures Research Methodology. 3.0 edition. The Millennium Project Publication.
Gort, M. & Klepper, S. (1982). Time paths in the diffusion of product innovations. The Economic Journal, 92(367), 630-653. https://doi.org/10.2307/2232554
Haupt, R., Kloyer, M. & Lange, M. (2007). Patent indicators for the technology life cycle development. Research Policy, 36(3), 387-398.
Hosseini Bamakan, S. M., Babaei Bondarti, A., Babaei Bondarti, P. & Qu, Q. (2021). Blockchain technology forecasting by patent analytics and text mining. Blockchain: Research and Applications, 2(2), 100019. http://doi.org/10.1016/j.bcra.2021.100019
Jee, S. J., Kwon, M., Ha, J. M. & Sohn, S. Y. (2019). Exploring the forward citation patterns of patents based on the evolution of technology fields. Journal of Informetrics, 13(4), 100985. https://doi.org/10.1016/j.joi.2019.100985
Joung, J. & Kim, K. (2017). Monitoring emerging technologies for technology planning using technical keyword based analysis from patent data. Technological Forecasting and Social Change, 114, 281-292. https://doi.org/10.1016/j.techfore.2016.08.020
 
 
Jun, S. & Lee, S. J. (2012). Emerging technology forecasting using new patent information analysis. International Journal of Software Engineering and Its Applications, 6(3), 107-116. Retrieved from https://www.earticle.net/Article/A208384
Jun, S., Park, S. S. & Jang, D. S. (2012). Technology forecasting using matrix map and patent clustering. Industrial Management & Data Systems, 112(5), 786-807.
Khalil, T (2000). Management of Technology: The key to competitiveness and wealth creation, (pp. 126-140). McGraw-Hill Publication.
Kim, B. (2003). Managing the transition of technology life cycle. Technovation, 23(5), 371-381. https://doi.org/10.1016/S0166-4972(02)00168-2
Kim, J. & Lee, S. (2017). Forecasting and identifying multi-technology convergence based on patent data: The case of IT and BT industries in 2020. Scientometrics, 111(1), 47-65. https://doi.org/10.1007/s11192-017-2275-4
Kim, Y. G., Suh, J. H. & Park, S. C. (2008). Visualization of patent analysis for emerging technology. Expert systems with applications, 34(3), 1804-1812.
Krestel, R., Chikkamath, R., Hewel, C & Risch, J. (2021). A survey on deep learning for patent analysis. World Patent Information, 65, 102035.
Kucharavy, D., Damand, D. & Barth, M. (2022). Technological forecasting using mixed methods approach. International Journal of Production Research, 1-25.
Lee, C., Kim, J., Kwon, O. & Woo, H. G. (2016). Stochastic technology life cycle analysis using multiple patent indicators. Technological Forecasting and Social Change, 106, 53-64. https://doi.org/10.1016/j.techfore.2016.01.024
Lee, C., Kim, J., Noh, M., Woo, H. G. & Gang, K. (2017). Patterns of technology life cycles: Stochastic analysis based on patent citations. Technology Analysis & Strategic Management, 29(1), 53-67. https://doi.org/10.1080/09537325.2016.1194974
Lee, H. J., Lee, S. & Yoon, B. (2011). Technology clustering based on evolutionary patterns: The case of information and communications technologies. Technological Forecasting and Social Change, 78(6), 953-967. https://doi.org/10.1016/j.techfore.2011.02.002
Lee, K., Go, D., Park, I. & Yoon, B. (2017). Exploring suitable technology for small and medium-sized enterprises (SMEs) based on a hidden Markov model using patent information and value chain analysis. Sustainability, 9(7), 1100. 
Lee, S., Lee, H. J. & Yoon, B. (2012). Modeling and analyzing technology innovation in the energy sector: Patent-based HMM approach. Computers & Industrial Engineering, 63(3), 564-577. https://doi.org/10.1016/j.cie.2011.12.002
Lee, S., Yoon, B. & Park, Y. (2009). An approach to discovering new technology opportunities: Keyword-based patent map approach. Technovation, 29(6-7), 481-497.
Little, A. D. (1981). The strategic management of technology. Cambridge publication.
Mao, G., Han, Y., Liu, X., Crittenden, J., Huang, N. & Ahmad, U. M. (2022). Technology status and trends of industrial wastewater treatment: A patent analysis. Chemosphere, 288 (Part 2), 132483. http://doi.org/ 10.1016/j.chemosphere.2021.132483
McGahan, A. M. & Silverman, B. S. (2001). How does innovative activity change as industries mature? International Journal of Industrial Organization, 19(7), 1141-1160.
Milanez, D. H., de Faria, L. I. L., do Amaral, R. M., Leiva, D. R. & Gregolin, J. A. R. (2014). Patents in nanotechnology: an analysis using macro-indicators and forecasting curves. Scientometrics, 101(2), 1097-1112. https://doi.org/10.1007/s11192-014-1244-4
Momeni, A. & Rost, K. (2016). Identification and monitoring of possible disruptive technologies by patent-development paths and topic modeling. Technological Forecasting and Social Change, 104, 16-29. https://doi.org/10.1016/j.techfore.2015.12.003
Pérez, C. (2003). Technological change and opportunities for development as a moving target. CEPAL Rev, 2001(75), 109-130. https://doi.org/10.18356/20f41c33-en
Popper, R. (2008). How are foresight methods selected? Foresight, 10(6), 62-89.  http://doi.org/10.1108/14636680810918586
Rezaeian, M., Montazeri, H. & Loonen, R. C. G. M. (2017). Science foresight using life-cycle analysis, text mining and clustering: A case study on natural ventilation. Technological Forecasting and Social Change, 118, 270-280.            https://doi.org/10.1016/j.techfore.2017.02.027
Rowe, G. & Wright, G. (1999). The Delphi technique as a forecasting tool: issues and analysis. International journal of forecasting, 15(4), 353-375.
Shibata, N., Kajikawa, Y., Takeda, Y. & Matsushima, K. (2008). Detecting emerging research fronts based on topological measures in citation networks of scientific publications. Technovation, 28(11), 758-775.
Suryadi, K., Salimridwan, A., Dou, H. & Purnama, A. (1999). Technology forecasting in competitive intelligence: The use of patents analysis. International Journal of Information Sciences for Decision Making (Print), 3, 1-6. Retrieved from:
Trappey, C. V., Wu, H. Y., Taghaboni-Dutta, F. & Trappey, A. J. (2011). Using patent data for technology forecasting: China RFID patent analysis. Advanced Engineering Informatics, 25(1), 53-64. https://doi.org/10.1016/j.aei.2010.05.007
Tsai, H. W., Che, H. C. & Bai, B. (2021). Using patent backward citation for classifying stock price of China Stock Market. Economics and Management, 18(2), 12-34. Retrieved from https://www.researchgate.net/publication/361084199_USING_PATENT_BACKWARD_CITATION_FOR_CLASSIFYING_STOCK_PRICE_OF_CHINA_STOCK_MARKET
Tseng, Y. H., Lin, C. J. & Lin, Y. I. (2007). Text mining techniques for patent analysis. Information Processing & Management, 43(5), 1216-1247.
Uhm, D., Ryu, J. B. & Jun, S. (2017). An interval estimation method of patent keyword data for sustainable technology forecasting. Sustainability, 9(11), 2025.
Woodland, P. C. & Povey, D. (2002). Large scale discriminative training of hidden Markov models for speech recognition. Computer Speech & Language, 16(1), 25-47.
 
World Health Organization (2016). WHO global model regulatory framework for 5 medical devices 6 including vitro diagnostic medical devices. Retrieved from
Wu, C. C. & Leu, H. J. (2014). Examining the trends of technological development in hydrogen energy using patent co-word map analysis. International Journal of Hydrogen Energy, 39(33), 19262-19269.
Wu, J., Wei, Y., Chen, Y., Long, Y., Huang, N. & Mei, Y. (2021). Chinese patent medicine for functional dyspepsia effects: A protocol for systematic review and Bayesian network meta-analysis. Medicine, 100(47), e27761.
Wu, Y. C. J. & Lee, P. J. (2007). The use of patent analysis in assessing ITS innovations: US, Europe and Japan. Transportation Research Part A: Policy and Practice, 41(6), 568-586. https://doi.org/10.1016/j.tra.2006.11.007
Yoon, B. C. & Park, Y. T. (2004). Morphology analysis approach for technology forecasting. In 2004 IEEE International Engineering Management Conference (IEEE Cat. No. 04CH37574) (Vol. 2, pp. 566-570). IEEE Publisher.
Yoon, B. & Park, Y. (2007). Development of new technology forecasting algorithm: Hybrid approach for morphology analysis and conjoint analysis of patent information. IEEE Transactions on Engineering Management, 54(3), 588-599.