Ahmad, P., Brogan, M. & Johnstone, M. N. (2014). The e-book power user in academic and research libraries: Deep log analysis and user customisation.
Australian Academic & Research Libraries, 45(1), 35-47.
https://doi.org/10.1080/00048623.2014.885374
Ansari, N., Vakili Mofrad, H., Mansoorizadeh, M. & Amiri. M. R. (2019). Discovery of user access pattern and loan transactions analysis of information resources using association rules technique in data mining (case study: Libraries and information centers of Hamedan University of medical sciences).
Iranian Journal of Information Processing & Management (Information Science & Technology), 34(3), 1155-1186.
https://doi.org/10.35050/JIPM010.2019.035 [in Persian]
Ashiq, M., Usmani, M. H. & Naeem, M. (2022). A systematic literature review on research data management practices and services. Global Knowledge, Memory and Communication. 71(8-9), 649-671. https://doi.org/10.1108/GKMC-07-2020-0103
Batten, G., Oakes, P. M. & Alexander, T. (2014). Factors associated with social interactions between deaf children and their hearing peers: A systematic literature review.
Journal of Deaf Studies and Deaf Education, 19(3), 285-302.
http://doi.org/10.1093/deafed/ent052
Berry, M. J. A. & Linoff, G. (1997). Data mining techniques: for marketing, sales and customer support. New York, John Wiley & Sons publication.
Bussaban, K. & Kularbphettong, K. (2014). Analysis of users' behavior on book loan log based on ssociation rule mining. World Academy of Science, Engineering and Technology, 8(1), 18-20. Retrieved from file:///C:/Users/Reza/Downloads/9997109.pdf
Chang, C. C. & Chen, R. S. (2006). Using data mining technology to solve classification problems: A case study of campus digital library.
The Electronic Library, 24(3), 307-321.
https://doi.org/10.1108/02640470610671178
Chapman, P
., Clinton, J., Kerber, R., Khabza, T., Reinartz., Shearer, C. & Wirth, R. (2000).
CRISP–DM 1.0: Step-by-step Data Mining Guide. Copenhagen, SPSS. Retrieved from
http://www.statoo.com/CRISP-DM.pdf
Chatfield, C. (1995). Model uncertainty, data mining and statistical inference.
Journal of the Royal Statistical Society: Series A (Statistics in Society), 158(3), 419-444.
https://doi.org/10.2307/2983440
Duan, S. & Wang, Z. (2021). Research on the service mode of the university library based on data mining.
Scientific Programming, 2021, 1-9.
http://doi.org/10.1155/2021/5564326
Fang, D., Yang, H., Gao, B. & Li, X. (2018). Discovering research topics from library electronic references using latent Dirichlet allocation.
Library Hi Tech, 36(3), 400-410.
https://doi.org/10.1108/LHT-06-2017-0132
Finnell, J. & Fontane, W. (2010). Reference question data mining: A systematic approach to library outreach.
Reference & User Services Quarterly, 49(3), 278-286. Retrieved from
http://www.jstor.org/stable/20865263
Hendrickx, T., Cule, B., Meysam, B., Naulaerts, S., Laukens, K. & Goethals, B. (2015). Mining association rules in graphs based on frequent cohesive itemsets. Part of the
Lecture Notes in Computer Science book series (LNAL), 9078. Springer, Cham.
https://doi.org/10.1007/978-3-319-18032-8_50
Hoffman-Apitius, M., Younesi, E. & Kasam, V. (2009). Direct use of information extraction from scientific text for modeling and simulation in the life sciences.
Library Hi Tech, 27(4), 505-519.
https://doi.org/10.1108/07378830911007637
Huancheng, L., Tingting, W. & Rocha, Á. (2019). An analysis of research trends on data mining in Chinese academic libraries.
Journal of Grid Computing, 17, 591-601.
https://doi.org/10.1007/s10723-018-9461-3
Huang, Z., Li, T. & Xiao, S. (2018). Research on library recommendation reading service system based on adaptive algorithm.
Wireless Personal Communications, 102, 1963-1977.
https://doi.org/10.1007/s11277-018-5249-9
Iqbal, N., Jamil, F., Ahmad. S. & Kim, D. (2020). Toward effective planning and management using predictive analytics based on rental book data of academic libraries.
IEEE Access, 8, 81978-81996.
http://doi.org/10.1109/ACCESS.2020.2990765
Jomsri, P. (2014). Book recommendation system for digital library based on user profiles by using association rule. In
Fourth Edition of the International Conference on the Innovative Computing Technology (INTECH 2014), (pp.130-134). Luton, Uk.
https://doi.org/10.1109/INTECH.2014.6927766
Kao, S. C., Chang, H. C. & Lin, C. H. (2003). Decision support for the academic library acquisition budget allocation via circulation database mining.
Information Processing & Management, 39(1), 133-147.
https://doi.org/10.1016/S0306-4573(02)00019-5
Liu, Y. (2018). Data mining of university library management based on improved collaborative filtering association rules algorithm.
Wireless Personal Communication:
An Internationsl Journal, 102(4), 3781-3790.
https://doi.org/10.1007/s11277-018-5409-y
Long, X. & Wu, Y. (2012). Borrowing data mining based on association rules. In
2012 International Conference on Computer Science and Electronics Engineering, (pp. 239–242). Hangzhou, China.
http://doi.org/10.1109/ICCSEE.2012.179
Lund, B. D. (2017). Four categories of academic libraries: A cluster analysis based on collections, expenditures, and circulation per student data.
Library Collections, Acquisitions, & Technical Services, 40(3-4), 96-105.
https://doi.org/10.1080/14649055.2020.1794748
Miles, M. B. & Huberman, A. M. (1994). Qualitative data analysis: An expanded sourcebook (2nd edition). Sage Publications.
Moher, D., Liberati, A., Tetzlaff, J., Altman, D. G. & the PRISMA group. (2009). Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement.
Journal of Clinical Epidemiology, 62(10), 1006-1012.
http://doi.org/10.1016/j.jclinepi.2009.06.005
Nandha Kumar, K. G. & Christopher, T. (2017). Assessment of library users' feedback using modified multilayer perceptron neural networks.
ICTACT Journal on Soft Computing, 7(4), 1505-1509.
http://doi.org/10.21917/ijsc.2017.0209
Nicholson, S. (2003). Bibliomining for automated collection development in a digital library setting: Using data mining to discover Web‐based scholarly research works.
Journal of the American Society for Information Science and Technology, 54(12), 1081-1090.
https://doi.org/10.1002/asi.10313
Prehanto, D. R., Indriyanti, A. D., Permadi, G. S., Vitadiar, T. Z. & Jayanti, F. D. (2020). Library book modeling data using the association rule method with apriori algorithm in determining book placement and analysis of book loans.
International Journal of Advanced Science and Technology, 29(05), 1244 -1250. Retrieved from
http://sersc.org/journals/index.php/IJAST/article/view/9786
Puarungroj, W., Pongpatrakant, P., Boonsirisumpun, N. & Phromkhot, S. (2018). Investigating factors affecting library visits by University Students using data mining.
Libres, 28(1), 25-33.
http://doi.org/10.32655/LIBRES.2018.1.3
Renaud, J., Britton, S., Wang, D. & Ogihara, M. (2015). Mining library and university data to understand library use patterns.
The Electronic Library, 33(3), 355-372.
https://doi.org/10.1108/EL-07-2013-0136
Sadiq, M. H. & Ahmed, N. S. (2019). Classifying and predicting students' performance using improved decision tree C4.5 in higher education institutes.
Journal of Computer Science, 15(9), 1291-1306.
https://doi.org/10.3844/jcssp.2019.1291.1306
Safdar, M., Batool, S. H. & Mahmood, K. (2020). Relationship between self-efficacy and knowledge sharing: systematic review.
Global Knowledge, Memory and Communication, 70(3), 254-271.
https://doi.org/10.1108/GKMC-11-2019-0139
Suresh, R., Anand. I., Vianesh, B. & Mohammad, H. R. (2018). Study of clustering algorithms for library management system. In
2018 International Conference on Computation of Power, Energy, Information and Communication (ICCPEIC), (pp. 221-224).
http://doi.org/10.1109/ICCPEIC.2018.8525182
Tsai, C. S. & Chen, M. Y. (2008). Using adaptive resonance theory and data-mining techniques for materials recommendation based on the e-library environment.
The Electronic Library, 26(3), 287-302.
https://doi.org/10.1108/02640470810879455
Tsuji, K., Kuroo, E., Sato, S., Ikeuchi, U., Ikeuchi, A., Yoshikane, F. & Itsumura, H. (2012). Use of library loan records for book recommendation. In
2012 IIAI International Conference on Advanced Applied Informatics, (pp. 30–35). Fukuoka, Japan.
http://doi.org/10.1109/IIAI-AAI.2012.16
Uppal, V. & Chandwani, G. (2013). An Empirical Study of Application of Data Mining Techniques in Library System.
International Journal of Computer Applications, 74(11), 42-46.
http://doi.org/10.5120/12933-0008
Williams, L. A., Fox, L. M., Roeder, C. & Hunter, L. (2014). Negotiating a text mining license for faculty researchers.
Information Technology and Libraries, 33(3), 5-21.
https://doi.org/10.6017/ital.v33i3.5485