Document Type : Articles

Authors

Ankara Yıldırım Beyazıt University

Abstract

As the volume and diversity of COVID-19 manuscripts grow, trend topic detection has become a more crucial issue to utilize information from pandemic-specific literature. Latent Dirichlet Allocation (LDA) and bibliometric analysis are common ways of detecting trend topics. In this study, a hybrid approach is suggested by combining both techniques as a novelty perspective to attain comprehensive information. The topics studied in the COVID-19 literature were outlined with the LDA analysis, and then the COVID-19 studies were examined specifically in the field of information systems (IS) with bibliometric analysis. As an outcome of LDA analysis, it has been determined that the topics studied on COVID-19 are concentrated under the categories of clinical studies, epidemiology and transmission of COVID-19, national and global policy responses to the COVID-19 pandemic, and the impacts of the COVID-19. Infodemiology in social media, computer-aided detection methods for diagnosis, information systems for contact tracing and health systems, distance learning solutions, data analytics for modeling and forecasting COVID-19, epidemiology, molecular docking of COVID-19 are primary topics of IS literature in COVID-19 era. This paper assists researchers in providing a comprehensive view of the compatibility of COVID-19 literature at a macro level and in the scope of IS and also offers suggestions for future work by IS researchers.

Keywords

 
Abd-Alrazaq, A., Schneider, J., Mifsud, B., Alam, T., Househ, M., Hamdi, M. & Shah, Z. (2021). A comprehensive overview of the COVID-19 literature: Machine learning-based bibliometric analysis. Journal of Medical Internet Research, 23(3), e23703. https://doi.org/10.2196/23703
Abdulrahim, H. & Mabrouk, F. (2020). COVID-19 and the digital transformation of Saudi higher education. Asian Journal of Distance Education, 15(1), 291-306. Retrieved from https://files.eric.ed.gov/fulltext/EJ1289975.pdf
 
Älgå, A., Eriksson, O. & Nordberg, M. (2020). Analysis of scientific publications during the early phase of the COVID-19 pandemic: Topic modeling study. Journal of Medical Internet Research, 22(11), e21559. https://doi.org/10.2196/21559
Andersen, N., Bramness, J. G. & Lund, I. O. (2020). The emerging COVID-19 research: dynamic and regularly updated science maps and analyses. BMC Medical Informatics and Decision Making, 20(309). https://doi.org/10.1186/s12911-020-01321-9
Ayele, W. Y. & Juell-Skielse, G. (2019). Unveiling topics from scientific literature on the subject of self-driving cars using latent dirichlet allocation. In 2018 IEEE 9th Annual Information Technology, Electronics and Mobile Communication Conference, (IEMCONP). (pp.1113–1119). Canada, Vancouver. https://doi.org/10.1109/IEMCON.2018.8615056
Bellegarda, J. R. (2008). Latent semantic mapping: principles & applications (Synthesis lectures on speech and audio processing, 3. Morgan and Claypool Publishers.
Brika, S. K. M., Chergui, K., Algamdi, A., Musa, A. A. & Zouaghi, R. (2022). E-learning research trends in higher education in light of COVID-19: A bibliometric analysis. Frontiers in Psychology, 12(762819). https://doi.org/10.3389/FPSYG.2021.762819
Cheng, X., Cao, Q. & Liao, S. S. (2020). An overview of literature on COVID-19, MERS and SARS: Using text mining and latent Dirichlet allocation. Journal of Information Science, 48(3), 1-17. https://doi.org/10.1177/0165551520954674
Chowdhury, S. D. & Oommen, A. M. (2020). Epidemiology of COVID-19. Journal of Digestive Endoscopy, 11(01), 3-7. https://doi.org/10.1055/S-0040-1712187
Cunningham, A. C., Goh, H. P. & Koh, D. (2020). Treatment of COVID-19: Old tricks for new challenges. Critical Care, 24(1), 91. https://doi.org/10.1186/s13054-020-2818-6
Dai, W. C., Zhang, H. W., Yu, J., Xu, H. J., Chen, H., Luo, S. P., Zhang, H., Liang, L. H., Wu, X. L., Lei, Y. & Lin, F. (2020). CT imaging and differential diagnosis of COVID-19. Canadian Association of Radiologists Journal, 71(2), 195-200. https://doi.org/10.1177/0846537120913033
Danesh, F., Dastani, M. & Ghorbani, M. (2021). Retrospective and prospective approaches of coronavirus publications in the last half-century: a Latent Dirichlet allocation analysis. Library Hi Tech, 39(3), 855-872. https://doi.org/10.1108/LHT-09-2020-0216
Dehghanbanadaki, H., Seif, F., Vahidi, Y., Razi, F., Hashemi, E., Khoshmirsafa, M. & Aazami, H. (2020). Bibliometric analysis of global scientific research on Coronavirus (COVID-19). Medical Journal of The Islamic Republic of Iran (MJIRI), 34(1), 354-362. https://doi.org/10.47176/MJIRI.34.51
Dewi, A., Nurmandi, A., Rochmawati, E., Purnomo, E. P., Rizqi, M. D., Azzahra, A., Benedictos, S., Suardi, W. & Kusuma Dewi, D. T. (2020). Global policy responses to the COVID-19 pandemic: Proportionate adaptation and policy experimentation: A study of country policy response variation to the COVID-19 pandemic. Health Promotion Perspectives, 10(4), 359-365. https://doi.org/10.34172/HPP.2020.54
Etyang, O. (2020). COVID-19 pandemic and its potential ımpact on the health sector in the comesa region. Common Market for Eastern and Southern Africa (COMESA),  Retrieved from https://www.comesa.int/wp-content/uploads/2020/06/COVID-19-Potential-Impact-on-the-Health-Sector_final.pdf
 
 
Feng, W., Newbigging, A. M., Le, C., Pang, B., Peng, H., Cao, Y., Wu, J., Abbas, G., Song, J., Wang, D. B., Cui, M., Tao, J., Tyrrell, D. L., Zhang, X. E., Zhang, H. & Le, X. C. (2020). Molecular diagnosis of COVID-19: challenges and research needs. Analytical Chemistry, 92(15), 10196–10209. https://doi.org/10.1021/acs.analchem.0c02060
Fisher, M. & Sang-Hun, C. (2020). How South Korea flattened the curve. The New York Times. Retrieved from https://www.nytimes.com/2020/03/23/world/asia/coronavirus-south-korea-flatten-curve.html
Girolami, M. & Kabán, A. (2003). On an equivalence between PLSI and Lda. In Proceedings of the 26th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval. (pp.433-434). Canada, Toronto. https://doi.org/10.1145/860435.860537
Griffiths, T. L. & Steyvers, M. (2004). Finding scientific topics. Proceedings of the National Academy of Sciences of the United States of America, 101(Suppl. 1), 5228-5235. https://doi.org/10.1073/PNAS.0307752101
Gupta, A., Aeron, S., Agrawal, A. & Gupta, H. (2021). Trends in COVID-19 Publications: Streamlining Research Using NLP and LDA. Frontiers in Digital Health, 3, 1-10. https://doi.org/10.3389/FDGTH.2021.686720
Haghani, M. & Bliemer, M. C. J. (2020). Covid-19 pandemic and the unprecedented mobilisation of scholarly efforts prompted by a health crisis: Scientometric comparisons across SARS, MERS and 2019-nCoV literature. Scientometrics, 125(3), 2695-2726. https://doi.org/10.1007/s11192-020-03706-z
Hale, T., Angrist, N., Goldszmidt, R., Kira, B., Petherick, A., Phillips, T., Webster, S., Cameron-Blake, E., Hallas, L., Majumdar, S. & Tatlow, H. (2021). A global panel database of pandemic policies (Oxford COVID-19 Government Response Tracker). Nature Human Behaviour, 5(4), 529-538. https://doi.org/10.1038/S41562-021-01079-8
Haleem, A., Javaid, M., Vaishya, R. & Deshmukh, S. G. (2020). Areas of academic research with the impact of COVID-19. The American Journal of Emergency Medicine, 38(7), 1524-1526. W.B. Saunders. https://doi.org/10.1016/j.ajem.2020.04.022
Händel, M., Stephan, M., Gläser-Zikuda, M., Kopp, B., Bedenlier, S. & Ziegler, A. (2020). Digital readiness and its effects on higher education students’ socio-emotional perceptions in the context of the COVID-19 pandemic. Journal of Research on Technology in Education, 54(2), 267-280. https://doi.org/10.1080/15391523.2020.1846147
Hossain, M. M. (2020). Current status of global research on novel coronavirus disease (COVID-19): a bibliometric analysis and knowledge mapping. F1000Research, 9, 374. https://doi.org/10.12688/F1000RESEARCH.23690.1
Hu, Q. & Liu, Y. (2022). Crisis management and national responses to covid-19: Global perspectives. Public Performance & Management Review, 45(4), 737-750. https://doi.org/10.1080/15309576.2022.2079692
 Krause, N. M., Freiling, I., Beets, B. & Brossard, D. (2020). Fact-checking as risk communication: the multi-layered risk of misinformation in times of COVID-19. Journal of Risk Research, 23(7-8), 1052–1059. https://doi.org/10.1080/13669877.2020.1756385
Kulkarni, P., Kodad, S., Mahadevappa, M. & Kulkarni, S. (2020). Utility of digital technology in tackling the COVID-19 pandemic: A current review. Journal of Clinical and Diagnostic Research, 14(8), 1-3. https://doi.org/10.7860/JCDR/2020/45341.13919
 
Kurtuluş, M. A. & Bilen, K. (2021). A bibliometric analysis on nature of science: a review of the research between 1986-2019. Scientific Educational Studies, 5(1), 47-65. Retrieved from https://dergipark.org.tr/en/pub/ses/issue/63427/941238
Lischer, S., Safi, N. & Dickson, C. (2021). Remote learning and students’ mental health during the Covid-19 pandemic: A mixed-method enquiry. Prospects, 51, 589-599. https://doi.org/10.1007/s11125-020-09530-w
Liu, B. M., Yang, Q. Q., Zhao, L. Y., Xie, W. & Si, X. Y. (2020). Epidemiological characteristics of COVID-19 patients in convalescence period. Epidemiology and Infection, 148, e108. https://doi.org/10.1017/S0950268820001181
Liu, Z. (2013). High performance latent Dirichlet allocation for text mining. Doctoral thesis. Brunel University, Lonodon.
Ma, S., Zhang, J., Zeng, M., Yun, Q., Guo, W., Zheng, Y., Zhao, S., Wang, M. H. & Yang, Z. (2020). Epidemiological parameters of COVID-19: Case series study. Journal of Medical Internet Research, 22(10), e19994. https://doi.org/10.2196/19994
Mallet Software Project. (2002). Machine learning for language toolkit. Retrieved from http://mallet.cs.umass.edu
Masada, T., Kiyasu, S. & Miyahara, S. (2008). Comparing LDA with pLSI as a dimensionality reduction method in document clustering. In LKR’08 Proceedings of the 3rd International Conference on Large-Scale Knowledge Resources: Construction and Application, 13–26. http://doi.org/10.1007/978-3-540-78159-2_2
Moriarty, L. F., Plucinski, M. M., Marston, B. J., Kurbatova, E. V., Knust, B., Murray, E. L., Pesik, N., Rose, D., Fitter, D., Kobayashi, M., Toda, M., Canty, P. T., Scheuer, T., Halsey, E. S., Cohen, N. J., Stockman, L., Wadford, D. A., Medley, A. M., Green, G., … & Richards, J. (2020). Public Health Responses to COVID-19 Outbreaks on Cruise Ships- Worldwide. Morbidity and Mortality Weekly Report (MMWR.), 69(12), 347-352. https://doi.org/10.15585/mmwr.mm6912e3
Moro, S., Cortez, P. & Rita, P. (2015). Business intelligence in banking: A literature analysis from 2002 to 2013 using text mining and latent Dirichlet allocation. Expert Systems with Applications, 42(3), 1314–1324. https://doi.org/10.1016/j.eswa.2014.09.024
Nicola, M., Alsafi, Z., Sohrabi, C., Kerwan, A., Al-Jabir, A., Iosifidis, C., Agha, M. & Agha, R. (2020). The socio-economic implications of the coronavirus pandemic (COVID-19): A review. International Journal of Surgery, 78, 185-193. https://doi.org/10.1016/j.ijsu.2020.04.018
Nuere, S. & de Miguel, L. (2020). The digital/technological connection with COVID-19: An unprecedented challenge in university teaching. Technology, Knowledge and Learning, 26(4), 931-943. https://doi.org/10.1007/s10758-020-09454-6
Obeidat, S. (2020). How artificial intelligence is helping fight the COVID-19 pandemic. Entrepreneur Middle East website. Retrieved from https://www.entrepreneur.com/article/348368
 Ozyurt, O. & Ayaz, A. (2022). Twenty-five years of education and information technologies: Insights from a topic modeling based bibliometric analysis. Education and Information Technologies, 27(2), 1-30. https://doi.org/10.1007/S10639-022-11071-Y
 
 
 
Pan, S. L. & Zhang, S. (2020). From fighting COVID-19 pandemic to tackling sustainable development goals: An opportunity for responsible information systems research. International Journal of Information Management, 55(3), 102196. https://doi.org/10.1016/j.ijinfomgt.2020.102196
Panahi, S., Lotfi, M. & Ouchi, A. (2022). Global research trends and hot topics on library and information science: A bibliometric analysis. Library Philosophy and Practice, 7073. Retrieved from https://digitalcommons.unl.edu/libphilprac./7073
Panigutti, C., Perotti, A. & Pedreschi, D. (2020). Doctor XAI an ontology-based approach to black-box sequential data classification explanations. Proceedings of the 2020 Conference on Fairness, Accountability, and Transparency. (pp.629-639). https://doi.org/10.1145/3351095.3372855
Paul, S. K. & Chowdhury, P. (2020). A production recovery plan in manufacturing supply chains for a high-demand item during COVID-19. International Journal of Physical Distribution and Logistics Management, 51(2),104-125. https://doi.org/10.1108/IJPDLM-04-2020-0127
Platt, T. (2020). States redesign home visiting programs for a telehealth world during COVID-19 .The National Academy for State Health Policy (website). https://www.nashp.org/states-redesign-home-visiting-programs-for-a-telehealth-world-during-covid-19/
Pu, M. & Zhong, Y. (2020). Rising concerns over agricultural production as COVID-19 spreads: Lessons from China. Global Food Security, 26, 100409. https://doi.org/10.1016/j.gfs.2020.100409
Rehürek, R. (2020). Gensim 4.2.0. (Software). Retrieved from https://radimrehurek.com/gensim/models/word2vec.html
Sathian, B., Asim, M., Banerjee, I., Pizarro, A. B., Roy, B., van Teijlingen, E. R., do Nascimento, I. J. B. & Alhamad, H. K. (2020). Impact of COVID-19 on clinical trials and clinical research: A systematic review. Nepal Journal of Epidemiology, 10(3), 878-887. https://doi.org/10.3126/NJE.V10I3.31622
Sheikhzadeh, E., Eissa, S., Ismail, A. & Zourob, M. (2020). Diagnostic techniques for COVID-19 and new developments. Talanta, 220, 121392. https://doi.org/10.1016/j.talanta.2020.121392
Sinclair, S. (2020). Spanish researchers working to curb Coronavirus spread with Blockchain App. CoinDesk Latest Headlines RSS. Retrieved from https://www.coindesk.com/tech/2020/04/17/spanish-researchers-working-to-curb-coronavirus-spread-with-blockchain-app
 Springer, S., Zieger, M. & Strzelecki, A. (2021). The rise of infodemiology and infoveillance during COVID-19 crisis. One Health, 13, 100288. https://doi.org/10.1016/J.ONEHLT.2021.100288
Stevens, K., Kegelmeyer, P., Andrzejewski, D. & Buttler, D. (2012). Exploring Topic Coherence over many models and many topics. In Proceedings of the 2012 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning. (pp.952-961). Retrieved from https://aclanthology.org/D12-1087
Syed, A. M. & Bawazir, H. S. (2021). Recent trends in business financial risk–A bibliometric analysis. Cogent Economics and Finance, 9(1), 1913877. https://doi.org/10.1080/23322039.2021.1913877
Tang, Y. W., Schmitz, J. E., Persing, D. H. & Stratton, C. W. (2020). Laboratory diagnosis of COVID-19: Current issues and challenges. Journal of Clinical Microbiology, 58(6), e00512-e00520. https://doi.org/10.1128/JCM.00512-20
Taylor, D. B. (2020). A timeline of the coronavirus pandemic. The New York Times Website. Retrieved from https://www.nytimes.com/article/coronavirus-timeline.html
 Ting, D. S. W., Carin, L., Dzau, V. & Wong, T. Y. (2020). Digital technology and COVID-19. Nature Medicine, 26(4), 459-461. https://doi.org/10.1038/s41591-020-0824-5
Tran, B. X., Ha, G. H., Nguyen, L. H., Vu, G. T., Hoang, M. T., Le, H. T., Latkin, C. A., Ho, C. S. H. & Ho, R. C. M. (2020). Studies of novel coronavirus disease 19 (COVID-19) pandemic: A global analysis of literature. International Journal of Environmental Research and Public Health, 17(11), 4095. https://doi.org/10.3390/ijerph17114095
Usman, M. & Ho, Y. S. (2021). COVID-19 and the emerging research trends in nvironmental studies: a bibliometric evaluation. Environmental Science and Pollution Research, 28(14), 16913-16924. https://doi.org/10.1007/s11356-021-13098-z
Vafea, M. T., Atalla, E., Georgakas, J., Shehadeh, F., Mylona, E. K., Kalligeros, M. & Mylonakis, E. (2020). Emerging technologies for use in the study, diagnosis, and treatment of patients with COVID-19. Cellular and Molecular Bioengineering, 13(4), 249-257. https://doi.org/10.1007/s12195-020-00629-w
Verma, S. & Gustafsson, A. (2020). Investigating the emerging COVID-19 research trends in the field of business and management: A bibliometric analysis approach. Journal of Business Research, 118, 253-261. https://doi.org/10.1016/j.jbusres.2020.06.057
 VOSviewer (Visualizing Scientific Landscapes Website). (2020). Leiden University. Retrieved from https://www.vosviewer.com/
Web of Science Platform (2022). Trusted publisher-independent citation database. Retrieved from https://clarivate.com/webofsciencegroup/solutions/web-of-science/
WHO. (2020). Archived: Listings of WHO's response to COViD-19. World Health Organization. Retrieved from https://www.who.int/news/item/29-06-2020-covidtimeline
 WHO. (2021). Information and resources on COVID-19 R&D. World Health Organization. Retrieved from https://www.who.int/news/item/15-01-2021-information-and-resources-on-covid-19-r-d
Zarocostas, J. (2020). How to fight an infodemic. Lancet, 395(10225), 676. https://doi.org/10.1016/S0140-6736(20)30461-X