Amjad, T., Daud, A., Che, D. & Akram, A. (2016). MuICE: mutual influence and citation exclusivity author rank.
Information Processing & Management, 52(3), 374-386.
https://doi.org/10.1016/j.ipm.2015.12.001
Bai, X., Zhang, F., Hou, J., Lee, I., Kong, X., Tolba, A. & Xia, F. (2018). Quantifying the impact of scholarly papers based on higher-order weighted citations.
PLoS ONE, 13(3), e0193192.
https://doi.org/10.1371/journal.pone.0193192
Bhattacharya, S., & Sarkar, D. (2021). Study on information diffusion in online social network. In Proceedings of International Conference on Frontiers in Computing and Systems (pp. 279-288). Springer, Singapore.
Bibi, F., Khan, H. U., Iqbal, T., Farooq, M., Mehmood, I. & Nam, Y. (2018). Ranking authors in an academic network using social network measures.
Applied Sciences, 8(10), 1824.
https://doi.org/10.3390/app8101824
Desai, M., Mehta, R. G. & Rana, D. P. (2019). An empirical analysis to identify the effect of indexing on influence detection using graph databases. International Journal of Innovative Technology and Exploring Engineering (IJITEE), 8(9S), 414-421. Retrieved from file:///C:/Users/drghane/Downloads/An_Empirical_Analysis_to_Identify_the_Ef.pdf
Desai, M., Mehta, R. G. & Rana, D. P. (2021). RGNet: The novel framework to model linked ResearchGate information into network using hierarchical data rendering. In Advances in Machine Learning and Computational Intelligence (pp. 37-45). Springer, Singapore.
Desai, M., Mehta, R. G. & Rana, D. P. (2022a). Anatomising the impact of ResearchGate followers and followings on influence identification.
Journal of Information Science.
https://doi.org/10.1177/01655515221100716
Desai, M., Mehta, R. G. & Rana, D. P. (2022b). ScholarRec: A scholars’ recommender system that combines scholastic influence and social collaborations in academic social networks.
International Journal of Data Science and Analytics, 16, 203–216.
https://doi.org/10.1007/s41060-022-00345-w
Desai, M., Mehta, R. G., & Rana, D. P. (2023). Contextual analysis of scholarly communications to identify the source of disinformation on digital scholarly platforms.
Kybernetes.
https://doi.org/10.1108/K-07-2022-0998 (in print)
Espinoza Vasquez, F. K., & Caicedo Bastidas, C. E. (2015). Academic social networking sites: A comparative analysis of their services and tools. IConference 2015 proceedings.
Gasparyan, A. Y., Nurmashev, B., Yessirkepov, M., Endovitskiy, D. A., Voronov, A. A. & Kitas, G. D. (2017). Researcher and author profiles: Opportunities, advantages, and limitations.
Journal of Korean Medical Science, 32(11), 1749-1756.
https://doi.org/10.3346/jkms.2017.32.11.1749
Hashmi, H. B. U. H., Kayani, H. U. R., Toor, S. K., Mansoor, A., & Raheem, A. (2020). The Impact of social media: A Survey.
International Journal of Scientific & Technology Research, 9(12), 341-348. Retrieved from
http://www.ijstr.org/final-print/dec2020/The-Impact-Of-Social-Media-A-Survey.pdf
Jordan, K. (2019). From social networks to publishing platforms: A review of the history and scholarship of academic social network sites.
Frontiers in Digital Humanities, 6, 5.
https://doi.org/10.3389/fdigh.2019.00005
Keller, R. C. A. (2019). Information and tips related to search engines like Google Scholar and other ways your work is and can be more visible on the net. A personal perspective. Retrieved from file:///C:/Users/drghane/Downloads/Search%20enginescomparison.pdf
Khvatova, T., Dushina, S. & Nikolaenko, G. (2017, December). Do the online activities of scientists in social professional networks influence their academic achievements? In European Conference on Management, Leadership & Governance (pp. 217-226). Academic Conferences International Limited.
Liang, Z., Mao, J., Lu, K., Ba, Z. & Li, G. (2021). Combining deep neural network and bibliometric indicator for emerging research topic prediction.
Information Processing & Management, 58(5), 102611.
http://dx.doi.org/10.1016/j.ipm.2020.102475
Maia, L. F. M. P., Lenzi, M., Rabello, E. T. & Oliveira, J. (2019). Scientific collaboration in Zika: identification of the leading research groups and researchers via social network analysis. Colaborações científicas em Zika: identificação dos principais grupos e pesquisadores através da análise de redes sociais.
Cadernos de saude publica, 35(3), e00220217.
https://doi.org/10.1590/0102-311X00220217
Makkizadeh, F., Dehghan, A. & Mostafavi, E. (2020). Investigating association between social influence, productivity, and performance in co-author network of researchers in medical ethics.
Iranian Journal of Medical Ethics and History of Medicine, 13(1), 240-252. Retrieved from
https://ijme.tums.ac.ir/article-1-6177-en.pdf [in Persian]
Malinen, S. & Koivula, A. (2020). Influencers and targets on social media: Investigating the impact of network homogeneity and group identification on online influence. First Monday, 25(4).
https://doi.org/10.5210/fm.v25i4.10453
Ortega, J. L. (2017). Toward a homogenization of academic social sites: A longitudinal study of profiles in Academia. edu, Google Scholar Citations and ResearchGate.
Online Information Review, 41(6), 812-825.
https://doi.org/10.1108/OIR-01-2016-0012
Samie, M. E., Biranvand, A., Rahmaniyan, S. & Varnamkhasti, E. M. (2022). The impact of the activity of industrial engineering researchers in various scientific-citation networks on improving their scientific authority status.
International Journal of Information Science and Management (IJISM), 20(1), 257-271.
https://dorl.net/dor/%2020.1001.1.20088302.2022.20.1.14.7
Valsesia, F., Proserpio, D. & Nunes, J. C. (2020). The positive effect of not following others on social media.
Journal of Marketing Research, 57(6), 1152-1168.
https://doi.org/10.1177/0022243720915467
Wan, Z., Mahajan, Y., Kang, B. W., Moore, T. J. & Cho, J. H. (2020). A Survey on Centrality Metrics and Their Network Resilience Analysis. IEEE Access, 9, 104773-104819.
Wang, Y., Ding, Z., Wei, X. X. & Long, J. (2021). Scholars influence evaluation based on time series heterogeneous network. In 2021 13th International Conference on Measuring Technology and Mechatronics Automation (ICMTMA) (pp. 868-871). IEEE.
Wu, X. & Zhang, C. (2019). Finding high-impact interdisciplinary users based on friend discipline distribution in academic social networking sites.
Scientometrics, 119(2), 1017-1035.
https://doi.org/10.1007/s11192-019-03067-2
Yaghtin, M., Sotudeh, H., Mohammadi, M., Mirzabeigi, M. & Fakhrahmad, S. M. (2019). A correlation study of co-opinion and co-citation similarity measures. International Journal of Information Science and Management (IJISM), 17(2),
Zhang, S., Zhao, D., Cheng, R., Cheng, J. & Wang, H. (2016). Finding influential papers in citation networks. In 2016 IEEE First International Conference on Data Science in Cyberspace (DSC) (pp. 658-662). IEEE.