Ashtarian Esfahani, A., Ershadi, M. J. & Azizi, A. (2020). Monitoring indicators of research data using I-MR control charts.
Iranian Journal of Information Processing and Management 35 (4), 957-933.
https://doi.org/10.35050/JIPM010.2020.025 [in Persian]
Avenali, A., Batini, C., Bertolazzi, P. & Missier, P. (2008). Brokering infrastructure for minimum cost data procurement based on quality-quantity models.
Decision Support Systems 45 (1), 95-109.
https://doi.org/10.1016/j.dss.2007.10.012
Azeroual, O., Ershadi, M. J., Azizi, A., Banihashemi, M. & Abadi, R. E. (2021). Data quality strategy selection in CRIS: Using a hybrid method of SWOT and BWM.
Informatica, 45(1), 65-80.
https://doi.org/10.31449/inf.v45i1.2995
Azeroual, O., Saake, G., Abuosba, M. & Schöpfel, J. (2020). Data quality as a critical success factor for user acceptance of research information systems.
Data, 5 (2), 35.
https://doi.org/10.3390/data5020035
Batini, C., Cabitza, F., Cappiello, C. & Francalanci, C. (2008). A comprehensive data quality methodology for web and structured data.
International Journal of Innovative Computing and Applications 1
(3),205-218.
https://doi.org/10.1504/IJICA.2008.019688
Batini, C., Cappiello, C., Francalanci, C. & Maurino, A. (2009). Methodologies for data quality assessment and improvement.
ACM Computing Surveys (CSUR), 41 (3), 1-52.
https://doi.org/10.1145/1541880.1541883
Cahyono, S. H. & Sucahyo, Y. G. (2020). Pengukuran Kualitas Data Menggunakan framework total data quality management (TDQM): Studi Kasus Sistem Informasi Beasiswa Universitas Indonesia Data Quality Assessment Using the TDQM Framework: A Case Study of University of Indonesia (UI) Scholarship Information System.
Jurnal IPTEK-KOM (Jurnal Ilmu Pengetahuan dan Teknologi Komunikasi),
22 (2), 193-206.
https://doi.org/10.17933/iptekkom.22.2.2020.193-206
De Amicis, F., Barone, D. & Batini, C. (2006). An analytical framework to analyze dependencies among data quality dimensions. In ICIQ (pp. 369-383).
Edris Abadi, R., Ershadi, M. J. & Niaki, S. T. A. (in Press). A clustering approach for data quality results of research information systems
. Information Discovery and Delivery.
https://doi.org/10.1108/IDD-07-2022-0063
Elouataoui, W., El Alaoui, I., El Mendili, S. & Gahi, Y. (2022). An advanced big data quality framework based on weighted metrics.
Big Data and Cognitive Computing, 6(4), 153.
https://doi.org/10.3390/bdcc6040153
English, L. P. (1999). Improving data warehouse and business information quality: methods for reducing costs and increasing profits. J. Wiley & Sons.
Eppler, M. J. & Muenzenmayer, P. (2002, November). Measuring information quality in the web context: a survey of state-of-the-art instruments and an application methodology. In Proceedings of the Seventh International Conference on Information Quality ICIQ (pp. 187-196).
Ershadi, M. J. & Ershadi, M. M. (2018). Implementation of failure modes and effects analysis in detergent production companies: A case study.
Environmental Quality Management 27 (3), 89-95.
https://doi.org/10.1002/tqem.21531
Ershadi, M. J., Jalalimanesh, A. & Nasiri, J. (2019). Designing a metadata quality model: case study of registration system. Iranian Journal of Information Processing & Management 34 (4): 1528-1499.
Ershadi, M. J. & Nabizadeh, M. (2022). Providing a structural methodology for measuring and analyzing the quality of theses and dissertations in the country.
Iranian Journal of Information Processing and Management, 37(3), 667-694.
https://doi.org/10.35050/JIPM010.2022.256 [in Persian]
Ershadi, M. J., Rajabi, T., Shirani, F. & Rezaee, N. (2016). Application of root-cause analysis on quality problem solving of research information systems: A case study on dissemination system of theses and dissertations (GANJ).
Iranian Journal of Information Management,
1 (1), 89-75. Retrieved from
https://www.aimj.ir/article_50658_d3bd1b73f795d1dbaa1206ffd6bb7c84.pdf?lang=en [in Persian]
Glowalla, P., Balazy, P., Basten, D. & Sunyaev, A. (2014, January). Process-driven data quality management--An application of the combined conceptual life cycle model. In 2014 47th Hawaii International Conference on System Sciences (pp. 4700-4709). IEEE.
Heinrich, B., Klier, M. & Kaiser, M. (2009). A procedure to develop metrics for currency and its application in CRM.
Journal of Data and Information Quality (JDIQ) 1 (1), 1-28.
https://doi.org/10.1145/1515693.1515697
Jeusfeld, M. A., Quix, C. & Jarke, M. (1998). Design and Analysis of Quality Information for Data Warehouses. In: Ling, TW., Ram, S., Li Lee, M. (eds)
Conceptual Modeling – ER ’98. ER 1998. Lecture Notes in Computer Science, vol 1507. Springer, Berlin, Heidelberg.
https://doi.org/10.1007/978-3-540-49524-6_28
Kapsner, L. A., Kampf, M. O., Seuchter, S. A., Kamdje-Wabo, G., Gradinger, T., Ganslandt, T. & Prokosch, H. U. (2019). Moving towards an EHR data quality framework: the MIRACUM approach. In German Medical Data Sciences: Shaping Change–Creative Solutions for Innovative Medicine (pp. 247-253). IOS Press.
Khosroanjom, D., Ahmadzade, M., Niknafs, A. & Mavi, R. K. (2011). Using fuzzy AHP for evaluating the dimensions of data quality.
International Journal of Business Information Systems 8 (3), 269-285.
https://doi.org/10.1504/IJBIS.2011.042409
Kwon, O., Lee, N. & Shin, B. (2014). Data quality management, data usage experience and acquisition intention of big data analytics.
International Journal of Information Management 34 (3), 387-394.
https://doi.org/10.1016/j.ijinfomgt.2014.02.002
Long, J. A. & Seko, C. E. (2014). A cyclic-hierarchical method for database data-quality evaluation and improvement. In Information quality (pp. 52-66). Routledge.
Loshin, D. (2001). Enterprise knowledge management: The data quality approach. Morgan Kaufmann.
Liu, Q., Feng, G., Zhao, X. & Wang, W. (2020). Minimizing the data quality problem of information systems: A process-based method.
Decision Support Systems 137. 113381.
https://doi.org/10.1016/j.dss.2020.113381
Michelberger, B., Mutschler, B. & Reichert, M. (2011). Towards process-oriented information logistics: Why quality dimensions of process information matter. Lecture Notes in Informatics (EMISA 2011), (pp.107-120). Bonn: Gesellschaft für Informatik.
Nikiforova, A. (2020). Definition and evaluation of data quality: User-oriented data object-driven approach to data quality assessment.
Baltic Journal of Modern Computing 8 (3), 391-432.
https://doi.org/10.22364/bjmc.2020.8.3.02
Ochoa, X. & Duval, E. (2006). Quality metrics for learning object metadata. In EdMedia+ Innovate Learning (pp. 1004-1011). Association for the Advancement of Computing in Education (AACE).
Peltier, J. W., Zahay, D. & Lehmann, D. R. (2013). Organizational learning and CRM success: a model for linking organizational practices, customer data quality, and performance
. Journal of Interactive Marketing 27(1), 1-13.
https://doi.org/10.1016/j.intmar.2012.05.001
Rahman, M. S., Mannan, M., Hossain, M.A., Zaman, A. H. & Hassan, H. (2018). Tacit knowledge-sharing behavior among the academic staff: Trust, self-efficacy, motivation and big five personality traits embedded model.
International Journal of Educational Management, 32 (5): 761-782.
https://doi.org/10.1108/IJEM-08-2017-0193
Nyumba, T. O., Wilson, K., Derrick, C. J. & Mukherjee, N. (2018). The use of focus group discussion methodology: Insights from two decades of application in conservation.
Methods in Ecology and Evolution,
9(1),20-32.
https://doi.org/10.1111/2041-210X.12860
Russell-Rose, T., Chamberlain, J. & Azzopardi, L. (2018). Information retrieval in the workplace: A comparison of professional search practices.
Information Processing & Management, 54 (6), 1042-1057.
https://doi.org/10.1016/j.ipm.2018.07.003
Scannapieco, M., Virgillito, A., Marchetti, C., Mecella, M. & Baldoni, R. (2004). The DaQuinCIS architecture: a platform for exchanging and improving data quality in cooperative information systems.
Information Systems, 29(7), 551-582.
https://doi.org/10.1016/j.is.2003.12.004
Sharma, S. (2020). Big data analytics for customer relationship management: A systematic review and research agenda. In Advances in Computing and Data Sciences: 4th International Conference, ICACDS 2020, Valletta, Malta, April 24–25, 2020, Revised Selected Papers 4 (pp. 430-438). Springer Singapore.
Sidi, F., Panahy, P. H. S., Affendey, L. S., Jabar, M. A., Ibrahim, H. & Mustapha, A. (2012). Data quality: A survey of data quality dimensions. In
2012 International Conference on Information Retrieval & Knowledge Management (pp. 300-304). IEEE. Kuala Lumpur. [
DOI:10.1109/InfRKM.2012.6204995]
Su, Z. & Jin, Z. (2007). A methodology for information quality assessment in the designing and manufacturing processes of mechanical products. In
Information Quality Management: Theory and Applications (pp. 190-220). IGI Global.
https://doi.org/10.4018/978-1-59904-024-0.ch009
Taleb, I., Serhani, M. A. & Dssouli, R. (2018). Big data quality assessment model for unstructured data.
In 2018 International Conference on Innovations in Information Technology (IIT) (pp. 69-74). IEEE. AL AIN UAE.
https://doi.org/10.1109/INNOVATIONS.2018.8605945
Wang, R. Y. & Stuart, E. M. (1990). A polygen model for heterogeneous database systems:
The source tagging perspective. In
Proceedings of the 16th International Conference on Very Large Data Bases (pp. 519-538). San Francisco, CA, United States. Retrieved from
http://web.mit.edu/tdqm/www/tdqmpub/polygenmodelAug90.pdf