Al-Jamal, W. T. & Kostarelos, K. (2011). Liposomes: From a clinically established drug delivery system to a nanoparticle platform for theranostic nanomedicine.
Accounts of Chemical Research, 44(10), 1094-1104.
https://doi.org/10.1021/ar200105p
Ale Ebrahim, S., Zamani Pedram, M., Ale Ebrahim, N. (2020). Current Status of Systemic Drug Delivery Research: A Bibliometric Study. In: Lai, WF. (Ed.) systemic delivery technologies in
Anti-Aging Medicine: Methods and Applications. Healthy Ageing and Longevity, vol 13. Springer, Cham.
https://doi.org/10.1007/978-3-030-54490-4_2
Ansari, K. M. N., Khan, N. B. N., Omar, N. F. B. M., El-Wakeel, H. A. & Rahaman, M. S. (2021). Assessment of literature growth in Anthropometric measurement research : A bibliometric analyses of Scopus indexed publications.
Library Philosophy and Practice (e-journal). 5901.
https://digitalcommons.unl.edu/libphilprac/5901
Bangham, A. D. & Horne, R. W. (1964). Negative staining of phospholipids and their structural modification by surface-active agents as observed in the electron microscope.
Journal of Molecular Biology, 8, 660-668.
http://dx.doi.org/10.1016/S0022-2836(64)80115-7
Barenholz, Y. (2012). Doxil®--the first FDA-approved nano-drug: Lessons learned.
Journal of Controlled Release : Official Journal of the Controlled Release Society, 160(2), 117-134.
https://doi.org/10.1016/j.jconrel.2012.03.020
Bobo, D., Robinson, K. J., Islam, J., Thurecht, K. J. & Corrie, S. R. (2016). Nanoparticle-based medicines: A review of FDA-approved materials and clinical trials to.
Pharmaceutical Research, 33(10), 2373-87.
http://dx.doi.org/10.1007/s11095-016-1958-5
Daraee, H., Etemadi, A., Kouhi, M., Alimirzalu, S. & Akbarzadeh, A. (2016). Application of liposomes in medicine and drug delivery.
Artificial Cells, Nanomedicine, and Biotechnology, 44(1), 381-391.
https://doi.org/10.3109/21691401.2014.953633
Dromi, S., Frenkel, V., Luk, A., Traughber, B., Angstadt, M., Bur, M., Poff, J., Xie, J., Libutti, S. K., Li, K. C. P. & Wood, B. J. (2007). Pulsed-high intensity focused ultrasound and low temperature-sensitive liposomes for enhanced targeted drug delivery and antitumor effect.
Clinical Cancer Research : An Official Journal of the American Association for Cancer Research, 13(9), 2722-2727.
https://doi.org/10.1158/1078-0432.CCR-06-2443
Drummond, D. C., Meyer, O., Hong, K., Kirpotin, D. B. & Papahadjopoulos, D. (1999). Optimizing liposomes for delivery of chemotherapeutic agents to solid tumors. Pharmacological Reviews, 51(4), 691-743.
El Maghraby, G. M., Barry, B. W. & Williams, A. C. (2008). Liposomes and skin: from drug delivery to model membranes.
European Journal of Pharmaceutical Sciences : Official Journal of the European Federation for Pharmaceutical Sciences, 34(4-5), 203-222.
https://doi.org/10.1016/j.ejps.2008.05.002
He, H., Lu, Y., Qi, J., Zhu, Q., Chen, Z. & Wu, W. (2019). Adapting liposomes for oral drug delivery. Acta pharmaceutica sinica B, 9(1), 36-48.
https://doi.org/10.1016/j.apsb.2018.06.005
Klibanov, A. L., Maruyama, K., Torchilin, V. P. & Huang, L. (1990). Amphipathic polyethyleneglycols effectively prolong the circulation time of liposomes.
FEBS Letters, 268(1), 235-237.
https://doi.org/10.1016/0014-5793(90)81016-h
Li, L., Hou, J., Liu, X., Guo, Y., Wu, Y., Zhang, L. & Yang, Z. (2014). Nucleolin-targeting liposomes guided by aptamer AS1411 for the delivery of siRNA for the treatment of malignant melanomas.
Biomaterials, 35(12), 3840–3850.
https://doi.org/10.1016/j.biomaterials.2014.01.019
Malam, Y., Loizidou, M. & Seifalian, A. M. (2009). Liposomes and nanoparticles: nanosized vehicles for drug delivery in cancer. T
rends in Pharmacological Sciences, 30(11), 592-599.
https://doi.org/10.1016/j.tips.2009.08.004
Mayhew, E., Lazo, R., Vail, W. J., King, J. & Green, A. M. (1984). Characterization of liposomes prepared using a microemulsifier.
Biochimica et Biophysica Acta (BBA)-Biomembranes, 775(2), 169-174.
https://doi.org/10.1016/0005-2736(84)90167-6
Mezei, M. & Gulasekharam, V. (1980). Liposomes - A selective drug delivery system for the topical route of administration. Lotion dosage form.
Life Sciences, 26(18), 1473-1477.
https://doi.org/10.1016/0024-3205(80)90268-4
Needham, D., Anyarambhatla, G., Kong, G. & Dewhirst, M. W. (2000). A new temperature-sensitive liposome for use with mild hyperthermia: characterization and testing in a human tumor xenograft model.
Cancer Research, 60(5), 1197-1201.
https://doi.org/ 10.3390/pharmaceutics15071886
Papahadjopoulos, D., Allen, T. M., Gabizon, A., Mayhew, E., Matthay, K., Huang, S. K., Lee, K. D., Woodle, M. C., Lasic, D. D. & Redemann, C. (1991). Sterically stabilized liposomes: improvements in pharmacokinetics and antitumor therapeutic efficacy.
Proceedings of the National Academy of Sciences of the United States of America, 88(24), 11460-11464.
https://doi.org/10.1073/pnas.88.24.11460
Persson, O., Danell, R. & Schneider, J. W. (2009). How to use Bibexcel for various types of bibliometric analysis. In
Celebrating scholarly communication studies: A Festschrift for Olle Persson at his 60th Birthday (pp. 9-24). Retrieved from
https://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-25636
Rahaman, M. S., Ansari, K. M., Kumar, H. & Shah, K. (2022). Mapping and visualizing research output on global solid waste management: a bibliometric review of literature.
Science & Technology Libraries, 41(2), 174-202.
https://doi.org/10.1080/0194262X.2021.1960943
Rahaman, S., Kumar, S., Ansari, K. M. N. & Rahman, R. (2021). Twenty-five years of global research publications trends of novel coronavirus: A scientometrics assessment.
Library Philosophy and Practice (e-journal). 4294.
https://digitalcommons.unl.edu/libphilprac/4294
Rahaman, M. S., Kumar, S. & Shah, K. (2021). A scientometric assessment of global research productivity in traditional knowledge:Evidence from scopus database. Kelpro Bulletin, 25(1), 15-29. Retrieved from
Rendi, R. (1965). Sodium, potassium-requiring adenosinetriphosphatase activity II. mechanism of inhibition by sulphydryl reagents.
Biochimica et Biophysica Acta (BBA)-Enzymology and Biological Oxidation, 99(3), 564-566.
https://doi.org/10.1016/S0926-6593(65)80215-6
Robert, C., Wilson, C. S., Venuta, A., Ferrari, M. & Arreto, C. D. (2017). Evolution of the scientific literature on drug delivery: A 1974-2015 bibliometric study.
Journal of Controlled Release, 260, 226-233.
https://doi.org/10.1016/j.jconrel.2017.06.012
Szoka Jr, F., & Papahadjopoulos, D. (1978). Procedure for preparation of liposomes with large internal aqueous space and high capture by reverse-phase evaporation.
Proceedings of the National Academy of Sciences of the United States of America, 75(9), 4194-4198.
https://doi.org/10.1073/pnas.75.9.4194
Torchilin, V. P. (2005). Recent advances with liposomes as pharmaceutical carriers.
Nature Reviews Drug Discovery, 4(2), 145-160.
https://doi.org/10.1038/nrd1632
Yatvin, M. B., Weinstein, J. N., Dennis, W. H. & Blumenthal, R. (1978). Design of liposomes for enhanced local release of drugs by hyperthermia.
Science (New York, N.Y.), 202(4374), 1290-1293.
https://doi.org/10.1126/science.364652